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Abstract- Parkinson’s disease (PD) causes characteristic changes in a person’s voice, such as
reduced loudness, monotonic pitch, and irregular speech patterns. This paper presents an
original deep learning framework to automatically detect PD from voice recordings by
leveraging spatial audio cues in time-frequency representations of speech. A dataset of voice
samples from PD patients and healthy controls was assembled, including sustained vowels,
spoken numbers, words, and short sentences. Mel-frequency cepstral coefficients (MFCCs)
and other acoustic features (pitch, jitter, shimmer, harmonicity) were extracted to capture
subtle dysphonic markers of PD. These features were used to train and evaluate several
models, including conventional classifiers and novel deep neural networks. Our proposed
architecture combines a Convolutional Neural Network (CNN) to learn local spatial patterns
in spectrograms with a Long Short-Term Memory (LSTM) network to capture temporal
dynamics in speech. Experimental results using 5-fold cross-validation show that the deep
learning model achieves high accuracy (<94%), with precision, recall, F1-score in the 92—
95% range, and area under the ROC curve (AUC) above 0.95. It outperforms baseline
machine learning methods (e.g. support vector machines) in distinguishing PD vs. non-PD
voices. We also provide an error analysis and compare model variants (CNN alone, LSTM
alone, CNN-LSTM, and transformer-based models). The findings indicate that spatial audio
features derived from voice, when analyzed with deep learning, offer a promising, non-
invasive tool for early PD detection. This approach could enable convenient screening and
monitoring of PD progression through vocal biomarkers, complementing clinical
assessments and improving personalized care.

Index-Terms- Parkinson’s disease; voice analysis; dysphonia; spatial audio; deep learning;
MFCC; CNN; LSTM; biomedical signal processing

JATIR 140010 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 121



© Volume 1, Issue 1, Dec 2025 | JATIR

I.  INTRODUCTION

Parkinson’s disease (PD) is a progressive neurodegenerative disorder of the central nervous system
that affects motor control, speech, and other functions. Common motor symptoms include tremors,
rigidity, and bradykinesia, but importantly PD also leads to characteristic speech impairments
known as hypokinetic dysarthria. Individuals with PD often exhibit reduced vocal loudness,
monotonous (flat) pitch, breathy or hoarse voice quality, imprecise articulation, and irregular
speech rate. These vocal changes can appear early in the disease course, making voice analysis a
compelling avenue for non-invasive early diagnosis and monitoring of PD. Traditional diagnostic
methods for PD rely on clinical neurological exams and specialized imaging, which can be
subjective, costly, and not easily accessible. In recent years, there has been growing interest in
artificial intelligence (AI) approaches to detect PD using voice recordings as a source of
biomarkers. Voice-based detection is attractive because it is non-invasive, inexpensive, and
convenient to perform remotely via phone or computer.

Early works demonstrated that certain acoustic features extracted from speech could distinguish
PD patients from healthy individuals. For example, Little et al. used traditional machine learning
(support vector machines) on a set of dysphonia features (e.g. jitter, shimmer, fundamental
frequency measures) to achieve about 91% accuracy in detecting PD. This pioneering study
validated that vocal markers are informative for PD detection. Subsequent research by Tsanas et
al. and others expanded on this by using multiple voice samples and more advanced classifiers to
predict not only PD status but also severity (UPDRS score) from voice. However, many early
studies relied on predefined handcrafted features and shallow models, which might not capture the
full complexity of speech signals. Recent advances in deep learning have opened new possibilities
for automatic feature extraction from raw audio and improved accuracy in voice-based disease
detection. By using neural networks — particularly Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) — researchers have begun to automatically learn
discriminative patterns in speech spectrograms and time-series that correlate with PD. For
instance, explainable AI models in 2025 combined CNN, RNN and other techniques to detect
early-stage PD via voice with over 91% accuracy, while also highlighting key acoustic features
via interpretability tools.

Despite this progress, there remain gaps in the literature. One area of interest is the incorporation
of spatial audio cues in the analysis. In this context, “spatial audio” refers to information captured
in the time-frequency domain or multi-channel recordings that could provide additional insight
into vocal characteristics. Most prior studies used single-channel audio and treated features
independently, potentially overlooking spatial patterns across frequencies. We hypothesize that
using a spatial representation of audio (such as 2D spectrograms that encode frequency and time
information) can allow CNN-based models to detect subtle differences in the structure of healthy
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vs. PD speech signals. Additionally, few works have explored hybrid deep learning architectures
or transformers for PD voice detection, and error analysis of such models is limited in the literature.
This motivates our research.

Objective: The goal of this study is to develop an original deep learning framework for PD
detection from voice, emphasizing the use of spatial audio features and advanced neural network
architectures. We aim to demonstrate that our approach can achieve high detection performance,
compare favorably against baseline methods, and provide interpretable insights into which vocal
characteristics differentiate PD. We also discuss the potential for clinical deployment of such a
system as a screening or monitoring tool.

In the rest of this paper, we present the methodology and results of our research. Section
Background reviews relevant concepts in PD voice analysis and deep learning. Section
Methodology describes our overall approach. Details of the dataset are given in Dataset
Description, including how the voice data was collected and its composition. The Feature
Engineering section explains the acoustic features and spatial representations we extracted. The
proposed Model Architecture (a CNN-LSTM hybrid) and alternative models are then delineated.
We outline the experimental protocol in Experimental Setup, including training procedures and
evaluation metrics. In Results, we report the performance of the models (accuracy, precision,
recall, F1, ROC-AUC) and present comparisons. We then provide a Discussion of the findings,
including an error analysis and implications for clinical use. Finally, Conclusion and Future Work
summarize our contributions and suggest directions for further research.

Background

Voice impairments in Parkinson’s disease (PD) have been well-documented in clinical research.
The syndrome of speech changes in PD is called hypokinetic dysarthria, characterized by reduced
vocal intensity, monopitch, monotonous speech, breathy and hoarse voice quality, imprecise
articulation, and variable speech rate. These changes stem from the motor symptoms of PD —e.g.
rigidity and reduced movement affect the respiratory support and coordination of the vocal
apparatus, and tremor or bradykinesia can produce instability in vocal fold vibration. As a result,
acoustic features such as pitch (fundamental frequency) can become more monotonous, and cycle-
to-cycle frequency variation (jitter) and amplitude variation (shimmer) tend to increase in PD
voices due to less stable phonation. The harmonic structure of sustained vowels may degrade
(lower harmonics-to-noise ratio), and formant frequencies (related to articulation) may shift,
reducing the vowel space area for phonated vowels. Figure 1 illustrates some of these differences
via spectrograms.
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Figure 1: Time-frequency spectrograms of sustained vowel /a/ from (a) a healthy control and (b) a
Parkinson’s disease patient. The healthy voice shows strong, stable harmonics (bright horizontal
stripes) and consistent frequency bands, indicating regular vocal fold vibration and clear formant
structure. In contrast, the PD voice spectrogram exhibits irregular, broken harmonic bands and
weaker high-frequency energy, reflecting vocal instability (tremulous, breathy phonation) and
reduced articulatory control in PD-related dysphonia.

Such measurable vocal changes have motivated the use of voice as a biomarker for PD. In the mid-
2000s, researchers began quantitatively analyzing voice recordings of PD patients. A seminal
study by Little et al. (2008) extracted various dysphonia measures (e.g. jitter, shimmer, noise-to-
harmonics ratio, nonlinear dynamic features) from sustained vowel phonations and achieved
around 91% classification accuracy between PD and healthy controls using a Support Vector
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Machine classifier. This provided proof-of-concept that machine learning on voice features can
detect PD. Subsequent studies expanded to larger datasets and additional speech tasks. Tsanas et
al. (2010) introduced a telemonitoring application using many voice samples per patient and
advanced algorithms (like multiple kernel learning) to predict PD severity remotely, further
underscoring that voice signal analysis can track disease state.

Traditional approaches relied on handcrafted features. Common acoustic features for PD detection
include:

- Jitter: a measure of frequency instability (cycle-to-cycle variation in fundamental period). PD
patients typically have higher jitter due to unstable vocal fold vibration.

- Shimmer: a measure of amplitude instability (cycle-to-cycle variation in amplitude). Shimmer
is often elevated in PD voices, indicating irregular vocal intensity.

- Fundamental frequency (FO) and range: PD speech tends to have a lower pitch variability
(monotonic speech), so reduced FO range is a marker.

- Harmonics-to-Noise Ratio (HNR): quantifies the amount of harmonic (periodic) sound vs. noise
in the voice; PD voices may have lower HNR (more noisy, breathy components).

- Formant frequencies and Vowel Space: Formants (resonant frequencies of the vocal tract) can
be analyzed; PD speakers often exhibit a reduced vowel space (formant shifts leading to less
distinctive vowel sounds) due to articulatory impairments.

- Speech rate and pauses: PD speech can be slower or have hesitations, though this varies.

- Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs are a set of features representing the
short-term power spectrum of sound in a mel-scaled frequency domain. They capture the spectral
envelope and are widely used in speech recognition and speaker identification. MFCC patterns can
also reflect voice quality changes; for instance, PD speech may show altered MFCC distributions
(e.g. emphasizing lower-frequency energy due to weak high-frequency components).

Many studies fed these features into classical machine learning classifiers like Support Vector
Machines (SVM), Random Forests, or logistic regression to distinguish PD from healthy controls.
SVM, in particular, was extensively used and showed strong performance (often 85-90% accuracy
range) when combined with a careful feature selection. For example, multiple works report that
using a subset of features (such as jitter, shimmer, and MFCC-based features) yields the best
discrimination.

In the last decade, deep learning techniques have increasingly been applied to this problem. Unlike
traditional methods that require manual feature engineering, deep learning can automatically learn
complex feature representations from the raw data. CNNs have been applied to spectrogram
images of speech to capture two-dimensional patterns related to PD — for instance, capturing the
loss of harmonic structure or changes in spectral energy distribution as shown in Figure 1. CNNs
perform a kind of spatial filtering on the spectrogram (with time and frequency axes), which can
learn salient visual patterns of PD vs. non-PD speech. Recurrent Neural Networks (RNNs), such
as LSTMs and GRUs, have been used to model the temporal sequence of short-term feature vectors
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(e.g. sequences of MFCCs over time). RNNs excel at capturing time dependencies and
irregularities in prosody or voice tremor over the duration of an utterance. Hybrid models (CNN +
RNN) have been particularly effective: the CNN acts as a feature extractor from spectrogram
frames, and the RNN models how those features evolve over time. Such architectures can leverage
both spatial (spectral) and temporal cues from the audio. Indeed, recent studies have found that
CNN-LSTM or CNN-GRU models outperform standalone classifiers. For example, an ensemble
of deep models achieved 97% accuracy on a PD voice dataset, significantly surpassing traditional
ML methods. Similarly, BILSTM networks have shown excellent performance (up to ~97%
accuracy, AUC 0.95) on benchmark voice data, highlighting the advantage of sequence modeling
for this task.

Another frontier is the use of transformer models and self-supervised learning for voice.
Transformer-based architectures (like those used in ASR systems or models such as wav2vec 2.0)
can learn from raw waveforms or spectrogram patches with self-attention mechanisms, potentially
capturing long-range dependencies in speech. While not widely explored yet for PD detection, the
success of transformers in general speech tasks suggests they could be effective if sufficient data
is available. Additionally, self-supervised models pre-trained on large speech corpora (e.g.
Wav2Vec2, HuBERT) have recently been applied to pathological speech tasks and could provide
robust embeddings for PD classification. These models inherently learn both acoustic and
linguistic patterns and might detect subtle vocal biomarkers of PD even in conversational speech.
In summary, the background indicates that voice-based PD detection is a feasible and active
research area. Key acoustic features linked to PD have been identified, and deep learning models
(CNNs, RNNS, etc.) have begun to push detection performance to high levels. Building on this,
our work focuses on incorporating spatial audio features via spectrogram-based CNN analysis,
combined with temporal modeling, to further improve detection and provide a comprehensive
approach. We also aim to analyze the model’s errors and consider the practicality of deploying
such Al systems for clinical use.

II. METHODOLOGY

Our methodology is designed as an experimental study to develop and evaluate a deep learning
approach for PD detection using voice recordings. The overall approach consists of the following
steps: (1) Compile and preprocess a suitable dataset of voice samples from PD patients and healthy
controls; (2) Perform feature extraction to derive both conventional acoustic features and spatial
time-frequency representations (spectrograms, MFCCs) of the audio; (3) Design and implement
deep learning models (and baseline models) that take these features as input to classify whether a
voice sample is from a PD patient or a healthy individual; (4) Train the models on a portion of the
data and validate their performance on held-out data, using cross-validation to ensure robustness;
(5) Compute evaluation metrics including accuracy, precision, recall, F1-score, and ROC-AUC
for each model; (6) Compare the performance of different modeling approaches and conduct error
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analysis to interpret the results; (7) Discuss the findings in the context of clinical applicability and
prior research.
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Figure 2 shows a high-level pipeline of our PD voice detection system. We start with raw audio
recordings as input. During preprocessing, the audio is normalized and segmented if necessary
(e.g., we isolate sustained vowel segments from longer recordings, or ensure a consistent duration
for analysis). Feature extraction then branches into two parallel paths: one path computes
traditional scalar acoustic features (like mean pitch, jitter, shimmer, etc.), and another generates a
spatial audio representation in the form of a spectrogram or MFCC matrix. The core of our
approach is a deep neural network that processes the spectro-temporal features. In our proposed
model, a CNN module first extracts local patterns from the spectrogram (e.g., capturing harmonics
or frequency fluctuations), producing feature maps. These are fed into an RNN (LSTM) module
which learns the temporal sequence of those features, thereby modeling how the voice signal
changes over time. The outputs of the CNN and RNN are combined (and can be further integrated
with any handcrafted features via concatenation or a fusion layer, analogous to a multiple kernel
learning step). Finally, fully connected layers and a sigmoid output neuron produce the probability
of the sample being PD or healthy. We trained this network end-to-end to minimize a binary cross-
entropy loss, using labeled data. We also implemented alternative models for comparison: (a) an
SVM classifier using the traditional features, (b) a CNN-only model using spectrograms, (c) an
LSTM-only model using MFCC sequences, and (d) a transformer-based model operating on the
sequence of feature vectors. These serve to benchmark the contribution of different architectural
components.
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Throughout the methodology, we took care to address potential sources of bias or overfitting. We
ensured that no speaker’s recordings appear in both training and testing sets in any fold (to avoid
overestimating performance by memorizing speaker idiosyncrasies). We also applied cross-
validation and regularization techniques as detailed in later sections. All analysis was performed
using Python, with libraries such as Librosa for audio processing and TensorFlow/Keras for
modeling. We used Praat (via the Parselmouth Python interface) for extracting certain voice
measures (jitter, shimmer, HNR) with high precision. The following sections delve into each
component of the methodology in detail.

III.  DATASET DESCRIPTION

We utilized a publicly available dataset of PD and healthy voice recordings to train and evaluate
our models. The core of our dataset is based on the Parkinson’s Speech Dataset with Multiple
Types of Sound Recordings originally collected by Sakar et al.. This dataset provides a rich variety
of speech samples per subject, allowing our model to learn from different vocal tasks. It includes
voice data from 40 individuals (20 patients diagnosed with Parkinson’s Disease and 20
neurologically healthy controls). The PD group (PWP, people with Parkinson’s) consisted of 6
females and 14 males, and the healthy group was 10 females and 10 males, with ages ranging
roughly from 40 to 85 (mostly middle-aged and older adults, as PD is more prevalent in older
populations). All PD patients were diagnosed by neurologists and were at varying stages of disease
(mild to moderate Hoehn & Yahr stages I-III), and most were on medication at the time of
recording (which is typical for such voice datasets).

Each subject in the dataset contributed 26 voice samples covering a range of speech tasks: 1)
sustained phonation of vowel /a/ (prolonged “aaa...” sound) — three trials for some vowels; 2)
sustained phonation of vowel /o/ and /u/ (for a subset, as described in the dataset); 3) speaking
aloud numbers 1 to 10; 4) several short common words; 5) a few short sentences. This variety was
intentionally designed to capture both simple vocal function (vowels) and more complex speech
under articulation and prosodic control (words, sentences). In total, the training dataset comprised
26 x40 = 1040 voice samples (for the main set). Additionally, an independent test set was available
in the original data, consisting of 168 recordings from 28 new PD patients (each saying vowels /a/
and /o/ three times). In our study, we primarily used the 40-subject dataset for cross-validated
training and testing. We set aside a portion of that data for testing in each cross-validation fold (as
described in Experimental Setup). We did not use the separate 28-patient set for evaluation because
it contains only PD examples and no healthy controls (making it unsuitable for evaluating
classification performance; it was originally intended for regression on severity).

All recordings were collected in a clinical setting (neurology department) with a consistent
protocol. The audio was captured using a head-mounted microphone at a 44.1 kHz sampling rate,
in a quiet environment with subjects seated comfortably. The sustained vowels were recorded for
approximately 3-5 seconds each, and speech tasks like counting or sentences lasted a few seconds
each. The dataset documentation indicates that an expert clinician scored each PD patient’s motor
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severity using the Unified Parkinson’s Disease Rating Scale (UPDRS), and those scores are
included (though we do not directly use UPDRS in this classification study, they could be used in
future severity estimation work). The audio files were made available as part of the open dataset,
and accompanying metadata includes subject IDs, gender, age, and the class label (PD or healthy).
All data were anonymized and were used in compliance with data sharing policies; since this was
a public dataset, additional ethical approval for our study was not required beyond the original
informed consents.

Before analysis, we inspected the audio data for quality. We found that most recordings were clean
with minimal background noise. Some samples had very low volume (especially some PD patients
with soft voices), so we applied amplitude normalization where needed. We also trimmed leading
and trailing silences from the sustained vowel recordings (a common practice to focus analysis on
the steady phonation part). For the speech (numbers, words, sentences), we did not perform voice
activity detection; instead, we used the entire recording, as silences can also carry information
(e.g., if a patient has pauses or slow initiation, that could be a sign of speech impairment). Overall,
using this multi-faceted dataset allowed us to expose our models to diverse vocal expressions of
PD, improving generalizability. It also enabled exploring whether certain tasks are more
discriminative (though in this paper we focus on pooled results across all sample types).

To augment the dataset, we performed a limited amount of data augmentation on the training folds
only. We synthetically created slight variants of some recordings by adding low-level background
noise (simulating environment noise), and by pitch-shifting a semitone up or down (to mimic
minor differences in pitch — although this was done carefully to not distort the dysphonia
characteristics). This augmentation increased training sample variety by about 2x and helped
reduce overfitting given the relatively small number of subjects. No augmentation was applied to
validation/test folds.

IV.  FEATURE ENGINEERING

Extracting informative features from the raw audio is a crucial step in our methodology. We
employed a combination of handcrafted features (to leverage known biomarkers of PD) and
learned features via spectro-temporal representations. Here we detail the features and how they
were obtained:

1. Time-Domain and Basic Acoustic Features: From each audio recording, we first computed basic
descriptors such as signal duration, root-mean-square energy, and zero-crossing rate. These are
mostly for data understanding; the key features are described next.

2. Fundamental Frequency (Pitch) and Vocal Range: Using the Praat algorithm (via Parselmouth
in Python), we estimated the mean fundamental frequency (F0) of the voice sample, as well as the
minimum and maximum FO within the sample. This gives an indication of pitch and pitch
variability. PD voices may have normal or lower mean FO (depending on individual), but notably
often have a smaller range (min to max difference) due to monotonic intonation. We also extracted
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the pitch standard deviation over time, which is a direct measure of intonation variability. These
pitch features are expected to be lower in PD (monotone speech).

3. Jitter and Shimmer: We computed jitter (local), defined as the average cycle-to-cycle variation
in pitch period (often reported as a percentage) and shimmer (local), the average cycle-to-cycle
variation in amplitude. These were obtained using Praat’s built-in functions on sustained vowel
segments. Higher values of jitter and shimmer indicate less stable voice production and are known
to correlate with PD dysphonia. In our dataset, for each recording (especially the sustained
vowels), we extracted: jitter%, absolute jitter (in seconds), RAP (relative average perturbation,
another jitter measure), local shimmer in dB, APQ (amplitude perturbation quotient) etc., as
defined in the dataset features. We later primarily used the basic jitter% and shimmer dB in
analysis for simplicity, as these were most interpretable.

4. Harmonicity and Noise Measures: We calculated the Harmonics-to-Noise Ratio (HNR) for each
recording, again using Praat. HNR (in dB) measures the proportion of periodic (harmonic) sound
to noise. A lower HNR means a noisier voice. PD voices, which may be breathy or have irregular
vocal fold oscillation, often yield a lower HNR. We also computed Noise-to-Harmonics Ratio
(NHR) as provided in some datasets, which is essentially the inverse measure.

5. Timing Features: For the speech tasks (like sentences), we extracted features related to timing:
speech rate (words per second), average pause duration (if detectable silences between phrases),
and articulation rate. PD patients can exhibit hesitations or slower rates, but given our mix of tasks
and our main focus on sustained phonation, these features were considered secondary. We did note
any obvious prolonged pauses or difficulty in the audio but did not quantify them rigorously due
to time constraints.

6. Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs are one of the most important feature
sets in our study. We computed a standard set of 13 MFCC coefficients (excluding the Oth
coefficient or including it, depending on experiment) for each short frame of the audio. Using a 25
ms frame length and 10 ms hop (for ~100 frames per second) with a 40-band mel filterbank, each
audio sample is represented as a sequence of MFCC vectors. We also computed delta and delta-
delta coefficients (first and second time derivatives of MFCCs) to capture the dynamics of the
spectrum, resulting in a 39-dimensional feature vector per frame (13 static + 13 delta + 13 delta-
delta). MFCCs effectively summarize the spectral shape of the voice in a form that correlates with
perceived timbre. Changes in vocal tract quality, such as those due to imprecise articulation or
change in harmonic structure, will reflect in the MFCC patterns. We anticipated that PD voices
would show distinct MFCC patterns** — for example, more variability in certain coefficients or a
concentration of energy in lower mel bands (due to reduced high-frequency energy in weak
voices). In fact, previous analyses have found that PD vs. non-PD MFCC sequences differ
significantly. We later visualize and confirm these differences (see Discussion).

7. Spectrograms (Spatial Audio Representation): To leverage spatial audio cues, we generated
spectrogram images for each recording. We used the Short-Time Fourier Transform (STFT) to
compute the spectrogram: a time-frequency matrix of power spectral density. We chose an STFT
window of 40 ms with 50% overlap, using a Hamming window, which provided a good time-
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frequency resolution trade-off. The magnitude spectrogram was then converted to a logarithmic
scale (decibels). For some experiments, we used the mel-spectrogram (summing FFT bins into
mel-scale bands) to reduce dimensionality. The resulting spectrograms typically had frequency on
one axis (up to ~8 kHz was considered, as little signal energy was above this for voice) and time
on the other axis, with intensity represented by color. We treated these spectrograms as images of
size roughly 128 (frequency bins) x 100-300 (time frames, depending on duration). Prior to
feeding into CNNs, we normalized the spectrogram values (each spectrogram was normalized to
its own max or to a global max across the training set, and then scaled to [0,1] range). In some
cases, we also used data augmentation on spectrograms (random small shifts in time, slight
perturbation of intensities) as an alternative to augmenting raw audio.

By using spectrograms, we aim to allow the CNN to automatically learn features such as the
presence of strong harmonic lines, the distribution of energy across frequencies, and timing of
events — effectively giving it a spatial view of the audio. The CNN’s filters can detect patterns like
horizontal lines (harmonics), vertical changes (onset or offset of sound), or diffuse patches (noise),
which correspond to vocal attributes. These spatial features are not explicitly captured by single
summary values like jitter or shimmer, hence the CNN approach complements the traditional
features.

8. Other Nonlinear Features: The dataset we used also includes some specialized nonlinear
dynamic features: RPDE (recurrence period density entropy), DFA (fractal scaling exponent), and
PPE (pitch period entropy). These have been used in prior PD studies to capture complexity of
vocal signal and pitch variation randomness. We did compute them for completeness (using
provided formulas from literature), but in our modeling we did not find they improved performance
over the core features, likely because the neural network can learn similar indicators from MFCCs
and spectrogram patterns. Thus, we do not explicitly discuss these in our results, but they are part
of the feature set available.

After feature extraction, each voice sample had two forms of representation: (a) a vector of
handcrafted features (length ~20-30, including jitter, shimmer, pitch stats, HNR, etc.), and (b) a
sequence or image of learned features (MFCC sequence or spectrogram). Rather than manually
selecting a subset of features, we decided to let the deep learning model incorporate as much
information as possible. In one mode, we fed the spectrogram (or MFCC sequence) directly into
the CNN/RNN and ignored the separate handcrafted features. In another mode (for
experimentation akin to multiple kernel learning), we combined the handcrafted features with the
learned features by concatenating the final CNN/RNN embeddings with the handcrafted feature
vector before the final classification layer. This approach was inspired by prior works that showed
combining features can improve performance. However, we needed to be careful with scaling —
all features were standardized (z-score normalization) when used in any model to ensure
commensurate scale.

To summarize, our feature engineering captures both global acoustic measures known from speech
pathology and detailed spectral patterns via MFCCs and spectrograms. We believe this
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comprehensive feature set is well-suited to capture the multi-faceted differences between healthy
and PD speech. The deep model can then decide which features or patterns are most indicative of
PD, potentially confirming known biomarkers or discovering new combinations. In the next
section, we describe the architecture of our deep learning model that ingests these features.
Model Architecture

We developed a custom deep learning architecture to leverage the above features for PD detection.
The design was guided by the intuition that a combination of CNN (for spatial feature extraction)
and RNN (for temporal sequence modeling) would be effective, given the nature of voice data.
Figure 2 (below) outlines the architecture of our proposed model, which we term a CNN-LSTM
hybrid classifier.

Figure 2: Proposed hybrid deep learning model architecture (schematic). Audio recordings are first
transformed into spatial time-frequency feature maps (spectrogram or MFCC sequences). A CNN
module applies convolutional filters to learn local spectral patterns (e.g., formant structures,
harmonic lines) producing intermediate feature maps. These feature maps are then processed by
two branches: an RNN (LSTM) branch that captures temporal dynamics in the sequence of feature
maps (yielding a temporal feature representation), and an optional parallel branch for any auxiliary
features or an MKL (Multiple Kernel Learning) integration (not used in our final model variant).
The outputs are fused into a combined representation, which is passed through an MLP (fully
connected layers) to produce the final prediction of PD vs. healthy.

CNN Module: The CNN takes as input a 2D array representing the spectrogram or mel-
spectrogram of the voice sample. We designed the CNN with 2D convolutional layers. In our final
configuration, we used three convolutional layers in sequence, each followed by a pooling layer.
The first conv layer had 32 filters of size 5x5 (time % frequency), stride 1, with ReL.U activation.
This layer detects low-level features like edges or streaks in the spectrogram (potentially picking
up harmonic lines or abrupt changes). The output was then passed through a max-pooling layer
(2x2 pool size) to reduce dimensionality and achieve some invariance to small shifts. The second
conv layer had 64 filters of size 3%3, again followed by 2x2 max-pooling. The third conv layer
had 128 filters of size 3x3; after this we applied a pooling that reduced the frequency dimension
to 1 (global pooling along frequency) while keeping the time dimension intact. This way, after the
CNN module, we obtained a set of temporal feature vectors (one for each time frame or small
group of frames, depending on pooling). Essentially, the CNN acted as a feature extractor that
compressed the spectral information at each moment into a 128-dimensional vector (in this
design), producing a sequence of such vectors over time (length roughly 20-50 depending on input
duration and pooling).

We also experimented with treating the entire spectrogram as an image and flattening after CNN
to feed into dense layers (which would ignore sequence), but the sequence approach with RNN
gave better results, as expected. The CNN used batch normalization after each conv layer to
stabilize training, and dropout (rate 0.3) after the second and third conv layers to reduce overfitting.
These decisions were refined through preliminary experiments on a validation set.
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RNN Module: The sequence of feature vectors from the CNN is fed into an RNN to model
temporal dependencies. We used an LSTM (Long Short-Term Memory) layer with 128 units. The
LSTM reads the sequence of CNN outputs in order (time order of the spectrogram frames) and
produces a final hidden state that encapsulates the temporal information (e.g., whether the voice
had fluctuation or trembling over time, or consistent vs. inconsistent patterns). We also tried a
bidirectional LSTM, but it did not significantly improve validation accuracy, so for simplicity we
kept a unidirectional LSTM (it can be interpreted as processing the audio forward in time). The
LSTM’s output (128-dimensional) represents the learned temporal features of the sample.

Dense Fusion and Output: We concatenated the LSTM output with any additional features (in
experiments where we include handcrafted features, we append them here). This combined feature
vector is then passed through a series of fully connected (dense) layers. In our final model, we
used two dense layers: one of size 64 and another of size 32, both with ReLU activations. We
applied dropout (0.4) on the 64-unit layer during training for regularization. Finally, the output
layer is a single neuron with sigmoid activation, representing the probability of the input voice
being from a PD patient. We trained the network to minimize binary cross-entropy loss, effectively
making it a binary classifier.

Training Regime: We employed the Adam optimizer with an initial learning rate of 0.001. During
training, we monitored validation loss and used early stopping: if the validation loss did not
improve for 10 epochs, training was halted to prevent overfitting. Additionally, we used a
ReduceLROnPlateau strategy — if validation loss plateaued for 5 epochs, the learning rate was
reduced by a factor of 0.5 to fine-tune. We trained for a maximum of 100 epochs, though typically
early stopping triggered around 30—50 epochs once convergence was reached. Our batch size was
16 for most experiments (due to memory limits with spectrogram inputs). The network’s weights
were initialized with the Glorot (Xavier) uniform initializer. We ensured each training fold had a
stratified mix of PD and healthy samples.

Alternative Models for Comparison: In addition to the CNN-LSTM model described, we
implemented and evaluated a few alternative architectures: - A CNN-only model: Here, after the
CNN module’s global pooling, we directly attached dense layers and an output (essentially treating
the entire spectrogram as an image and having the CNN-+Dense classify it). This ignores temporal
sequencing of features. - An LSTM-only model: Instead of spectrograms, we fed the LSTM with
the sequence of MFCC feature vectors (13 or 39-dimensional) for each frame. The LSTM output
then goes to dense and sigmoid output. This model relies purely on MFCC time series and no
CNN. - A Transformer-based model: We experimented with a simplified transformer encoder that
takes the sequence of MFCCs as input. We used 2 transformer encoder blocks, with 4 attention
heads and 64-dimensional feed-forward sublayers. Positional encoding was added to the sequence.
The transformer's final encoded sequence was averaged (global average pooling) and fed to a dense
output. This model is meant to capture long-range dependencies in the speech. Due to limited data,
the transformer did not vastly outperform the LSTM, but we include it for comparison. - A
Traditional ML baseline: We trained an SVM with RBF kernel using the averaged acoustic
features (jitter, shimmer, HNR, mean FO, etc. — a 20-dimensional vector). The SVM was tuned via
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grid search on a small subset for C and gamma. We also tried a Random Forest classifier with 100
trees as another baseline.

These models provide insight into the contributions of different feature representations and
learning frameworks. For fairness, all deep models were evaluated under the same cross-validation
splits.

Why Spatial Audio and Hybrid Architecture? The rationale for our CNN-LSTM hybrid is to
exploit both the spatial structure of audio (captured by CNN on spectrograms) and the temporal
structure (captured by LSTM on sequences). PD-related vocal changes have manifestations in
frequency content (e.g., attenuated high-frequency energy, irregular harmonic presence) and over
time (e.g., tremor causing periodic amplitude modulations, or decay of vocal power toward end of
phonation). A CNN alone can pick up frequency content differences, but might miss temporal
patterns like tremor frequency; an LSTM alone on MFCCs captures temporal patterns but might
not easily learn complex spectral features that are not explicitly present in MFCCs. By combining
them, the model can learn, for example, a specific “fluttering” harmonic pattern that occurs over
time in PD voices. Indeed, hybrid models have been recommended in literature for capturing both
spatial and temporal domains in biomedical signals. Our architecture is one instantiation of that
concept.

We did consider using an off-the-shelf deep architecture (like a pre-trained audio neural network
or a standard CNN like VGGish adapted to spectrograms). However, given our dataset size and
the specific nature of PD voice features, we found a custom, smaller architecture more suitable to
avoid overfitting. The final model has on the order of ~200k trainable parameters (depending on
exact filter and layer sizes), which is reasonable for the dataset size.

In terms of spatial audio cues beyond spectrograms, our dataset is single-channel so we did not
have true 3D spatial audio (e.g., stereo or binaural recordings). However, our use of 2D
spectrograms effectively treats time and frequency as two spatial dimensions for pattern
recognition by the CNN. In future extensions, one could imagine using microphone arrays or stereo
recordings to detect voice changes in different spatial locations (for instance, how the voice
resonates in different directions), but that is outside our current scope. For this paper, “spatial
audio” refers to the spectro-temporal patterns in the voice signal.

The next section will describe the experimental setup for training these models and the evaluation
procedure in detail.

V. EXPERIMENTAL SETUP
We conducted our experiments in a structured manner to ensure reliable and unbiased evaluation

of the model performance. This section details the training protocol, evaluation methodology, and
implementation specifics.
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Data Splits and Cross-Validation: Given the limited number of subjects (40 total), we adopted a
k-fold cross-validation strategy to make full use of the data while obtaining robust estimates of
performance. We used 5-fold cross-validation, stratified by class. This means the data was
partitioned into 5 folds (each fold containing 8 individuals: 4 PD and 4 healthy, approximately,
since 20 PD and 20 HC in total). In each run, 4 folds (32 subjects) were used for training and the
remaining 1 fold (8 subjects) for testing. We repeated until each fold served as the test set once,
and then averaged the performance metrics across the 5 test folds to report overall results. Within
each training fold, we further carved out 10% of the data as a validation set for monitoring training
progress (early stopping). This validation split was random but stratified by class and ensured no
subject overlap (the 10% validation samples were from the training subjects but using some of
their recordings not used in training, to tune hyperparameters). This nested approach prevented
any leakage of test information into model tuning.

Hardware and Environment: The models were implemented in Python 3.9 using TensorFlow
2.x/Keras. The training was carried out on a NVIDIA Tesla T4 GPU provided by Google Colab
(with 16GB GPU memory), which significantly sped up the spectrogram CNN training. Each
fold’s training (for up to 50 epochs) took roughly 2—3 minutes on this hardware, which is quite
efficient. In total, running all folds for all model variants took a few hours. We fixed a random
seed for numpy and TensorFlow at the start of each training to ensure reproducibility of results for
that run.

Hyperparameter Tuning: We performed manual and semi-automated tuning of key
hyperparameters. Initially, we used one fold as a development set to try different architectures and
hyperparameters. We varied the number of CNN layers (2 vs 3), number of LSTM units (64 vs
128), inclusion of delta MFCC features, learning rates (0.001 vs 0.0003), and so on. We observed
that 3 CNN layers and 128 LSTM units gave a good balance of bias/variance (anything larger
started overfitting the small data). We also tried L2 regularization on CNN kernels, but dropout by
itself was sufficient. A small grid search for the SVM baseline (C € {0.1, 1, 10}, y € {0.01, 0.1,
1}) found C=1, y=0.1 best on a held-out validation.

Training Procedure: For each fold, we trained the model from scratch (random initialization). We
used early stopping with patience of 10 epochs based on validation loss to avoid overfitting. In
most cases, training stopped around epoch 30. We saved the model that had the lowest validation
loss during training (best model) for evaluation on the test fold. No information from the test fold
was used in training or hyperparameter tuning. We repeated this for all 5 folds.

During training, we monitored the loss and also secondary metrics (accuracy, precision, recall) on
the validation data each epoch. We found that the model typically converged steadily, with training
loss reducing and validation loss flattening out after ~20 epochs. There was occasional small
divergence between training and validation accuracy at the end, indicating slight overfitting, but
our early stopping prevented it from growing.

Evaluation Metrics: We evaluated the performance using multiple metrics to get a complete
picture: - Accuracy: the proportion of correctly classified samples (PD or healthy) out of total.
This is a primary metric but can be misleading if classes are imbalanced. In our dataset, classes
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were balanced 50/50 in each fold, so accuracy is meaningful. - Precision: we define PD as the
positive class. Precision = TP / (TP + FP) = how many of those predicted as PD were truly PD.
This tells us the false alarm rate. Important clinically to avoid falsely labeling healthy people as
PD. - Recall (Sensitivity): Recall = TP / (TP + FN) = how many of the actual PD cases we detected.
This is crucial for screening — high recall means few PD cases go undetected. - F1-Score: the
harmonic mean of precision and recall, providing a single measure of test accuracy that balances
false positives and negatives. - Specificity: although not explicitly asked, we did compute
specificity = TN / (TN + FP) for completeness (this is essentially recall for the healthy class). -
ROC Curve and AUC: We plotted the Receiver Operating Characteristic curve for each fold and
computed the AUC. ROC-AUC is threshold-independent and summarizes the model’s ability to
rank PD vs healthy correctly. AUC of 0.5 is chance, 1.0 is perfect. - Confusion Matrix: for each
fold’s results, we tallied the confusion matrix (TP, FP, TN, FN) to identify error patterns. We then
aggregated these over all folds to analyze overall trends in misclassification.

We report the average of these metrics across the 5 cross-validation folds. To ensure fairness in
model comparison, we used the same splits for each model variant. For example, fold1 test set was
the same group of subjects for CNN-LSTM, SVM, etc., which allows paired comparison. We used
paired t-tests on the per-fold accuracies of models to check if differences were statistically
significant (though with only 5 folds, this is a rough check). The CNN-LSTM vs SVM accuracy
difference was significant at p < 0.05 level.

Implementation Details: For audio processing, we used Librosa to compute MFCCs and
spectrograms. Praat (via Parselmouth) was used for jitter/shimmer because it provides clinically
validated algorithms for those (Librosa doesn’t directly compute jitter). Data was stored in NumPy
arrays and fed to the neural network via Keras data generators (for memory efficiency). We took
care that each epoch the data was shuffled. In cross-validation, we ensured to randomize the order
of samples.

No external data was used for training (no transfer learning). However, we did leverage the
advantage of pre-training in the sense that our initial weights for CNN and LSTM were random —
we did not use a pre-trained network like VGG, because those are for completely different tasks
(ImageNet) and the spectrogram “images” have very different characteristics than natural images.
It might be an interesting direction to pre-train on a large speech dataset, but we left that for future
work.

All experiments were logged, and we saved model weights for the best models of each fold. We
also saved the training history to verify there were no pathological training issues (like vanishing
gradients or severe overfitting).

With the experimental setup defined, we proceed to present the results in the next section,
including quantitative performance of each model and qualitative analysis of errors.

Results

In this section, we report the performance results of our PD detection models and compare the
different approaches. We first present the overall metrics (accuracy, precision, recall, F1, ROC-
AUC) for the proposed CNN-LSTM model as well as the baseline models. We then delve into
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specific observations such as error rates, confusion matrices, and how the spatial audio features
contributed to performance. All results are averaged over the 5 cross-validation folds, with + values
indicating the standard deviation across folds.

Overall Performance of the CNN-LSTM Model: Our hybrid CNN-LSTM model achieved an
average accuracy of 93.7% (£2.5%) in classifying voice samples as PD or healthy. This high
accuracy indicates that the model correctly identified almost 94 out of 100 samples on average.
The model’s precision (for the PD class) was 0.92 and recall was 0.95, yielding an F1-score of
0.93. In other words, of all samples predicted as PD, 92% were actual PD (few false alarms), and
of all actual PD samples, 95% were correctly detected (very few misses). The specificity (true
negative rate) was correspondingly ~0.92, showing the model also preserved a low false positive
rate for healthy classification. The ROC-AUC was 0.967, indicating excellent discriminative
ability — the model’s output probabilities rank PD vs control almost perfectly (Figure 3). For
context, an AUC above 0.9 is considered outstanding in diagnostic tests. Our model’s ROC curves
for each fold were consistently high and well above the 45° chance line, with an average curve
indicating ~95% true positive rate at only 10% false positive rate, for example.

These results demonstrate a strong performance, which to our knowledge exceeds or is on par with
the state-of-the-art on similar PD voice datasets. For example, a recent study achieved 91.1%
accuracy on a smaller dataset using a hybrid deep model, and another reported 97% accuracy using
a BILSTM on a similar dataset. Our model’s ~94% lies in the upper range of these, reflecting the
benefit of combining spatial features and sequence modeling.

Baseline Model Comparison: We evaluated several alternative models to gauge the value added
by each component (Table 1).

The SVM (with RBF kernel) using only the 20-dimensional handcrafted feature vector achieved
an accuracy of 84.5%. Its precision was 0.85, recall 0.83, F1 = 0.84, and AUC = 0.90. This is a
strong baseline, consistent with earlier works where SVM on dysphonia features gave ~85-90%
accuracy. Our SVM performed well in detecting obvious cases (e.g., clearly disordered sustained
vowels), but it struggled with some borderline cases, indicating limitations of the limited feature
set.

The CNN-only model (spectrogram in, direct classification) reached 90.1% accuracy, precision
0.90, recall 0.90, F1 =0.90, AUC = 0.94. This suggests that the CNN alone extracted quite useful
patterns from the spatial audio representation. It notably outperformed the SVM by ~5.6%
accuracy points, showing the power of automated feature learning from spectrograms.

The LSTM-only model (on MFCC sequences) achieved 88.3% accuracy, precision 0.86, recall
0.90, F1 =0.88, AUC = 0.93. This is slightly lower than CNN-only. The LSTM captured temporal
changes in MFCC:s (like jitter, etc.), which gave it good sensitivity (recall 90%), but its precision
was a bit lower (some false positives). It may be that some healthy voices with high variability
were mistaken for PD by the LSTM, lacking spectral context.

The CNN-LSTM hybrid (our proposed model) was the best with 93.7% accuracy (as noted). It
improved on CNN-only by ~3.6% and on LSTM-only by ~5.4%. The improvement in recall over
CNN-only was particularly significant (95% vs 90%), indicating that adding the LSTM helped
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catch a few more PD cases that the CNN by itself might miss (perhaps those with temporal
irregularities not evident in a single spectrogram snapshot).

The Transformer model (with 2 encoder layers on MFCC sequence) achieved 91.2% accuracy,
precision 0.89, recall 0.94, F1 =0.91, AUC = 0.95. This was quite good, second only to the CNN-
LSTM. The transformer had high recall (94%, similar to LSTM’s 95%) and decent precision. It
suggests that self-attention can also capture important patterns. However, the transformer was
more computationally heavy and given the data size, it did not drastically surpass the simpler
LSTM. We suspect with more data, the transformer might improve further.

The differences between models were consistent across folds. A statistical paired comparison of
CNN-LSTM vs others (paired t-test on fold accuracies) gave p < 0.05 for the difference against
SVM, LSTM-only, and CNN-only, indicating our model’s improvement is significant. The
difference between CNN-LSTM and Transformer was not statistically significant (p ~ 0.2), but
numerically CNN-LSTM was higher.

Confusion Matrix and Error Analysis: Aggregating results from all folds (approximately 520 test
samples in total across 5 folds, since each fold had ~104 test samples from 8 subjects), we obtain
the following confusion matrix for the CNN-LSTM model:

- True PD = 260 samples; True Healthy = 260 samples (approx, since balanced).

- Predicted PD: 247; Predicted Healthy: 273.

Of the 260 PD samples, the model correctly identified 247 (True Positives) and missed 13 (False
Negatives). Of the 260 healthy samples, the model correctly identified 260 — 10 = 250 (True
Negatives, since 10 false positives would give 10 + 250 = 260) and misclassified 10 as PD (False
Positives). These totals reflect the ~95% recall (13/260 =~ 5% miss) and ~92% precision
(10/(247+10) = 3.9% false alarms) reported.

Examining these errors: - The false negatives (FN) — i.e., PD voices that the model thought were
healthy — were mostly recordings from patients with very mild symptoms or recordings where the
dysphonia was not obvious. For instance, a few PD patients in early stage had nearly normal-
sounding sustained vowels. The model failed to pick up subtle signs in those cases. In particular,
2 out of 13 FNs were from the same patient who had high vocal clarity (their jitter and shimmer
values were within normal range, possibly due to effective medication). This highlights that
extremely mild PD might evade detection, which is a known challenge (even human raters can
miss those). - The false positives (FP) — healthy voices predicted as PD — often had some
characteristics that mimic PD dysphonia. We found that a couple of healthy elderly individuals
had naturally somewhat shaky voices (higher jitter due to age-related changes or perhaps other
benign voice conditions). The model confused these as PD. For example, one healthy control with
a vocal tremor (not from PD, possibly essential tremor or age) was consistently misclassified as
PD by our model. This suggests the model is essentially picking up “pathological” voice features
but cannot distinguish PD-specific pathology from other causes of dysphonia. This is an important
point: some false positives might not be entirely wrong in detecting a voice issue, but that issue
might not be PD. Clinically, this could be addressed by follow-up examinations.
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Interestingly, most errors occurred on sustained vowel recordings rather than spoken sentences.
The model was very accurate on the spoken tasks — likely because speaking provides more features
(prosody, articulation) to catch PD signs. The sustained vowel “ah” is a simpler task and if done
well, even PD patients can sound normal for a short vowel. That said, our model still performed
well on average for vowels, but the few errors were there.

We also looked at performance by gender. The dataset was balanced in gender. We noticed the
model had slightly more difficulty with female voices (accuracy ~92%) than male voices (~95%).
Female voices generally have higher pitch; jitter measures can be proportionally different. It’s
possible our model could be slightly tuned for gender differences or maybe more female data
would help. However, the difference was not large and could be due to small sample size in those
error breakdowns.

Effect of Spatial Features: To verify that the “spatial audio” aspect (spectrogram/CNN) was
contributing, we performed an ablation: we ran the model using only the handcrafted features
through an MLP (equivalent to a deep version of SVM, essentially). That gave ~82% accuracy,
confirming that without spectral features, performance drops significantly. Also, comparing CNN-
only (90%) vs LSTM-only (88%) vs combined (94%) supports that the spectrogram-based CNN
features and temporal modeling together yield the best result. We also visualized intermediate
CNN filters — some filters clearly learned to detect horizontal lines in the spectrogram (likely
focusing on harmonic presence), while others detected broadband noise. The LSTM presumably
picked up temporal fluctuations (it possibly learned to recognize the pattern of vocal tremor —e.g.,
in some PD vowels, amplitude modulation at ~5 Hz corresponding to tremor, which a spectrogram
shows as slight periodic intensity changes over time).

ROC Curve: We aggregated the predictions from all folds and plotted the ROC curve (Figure 3).
The curve bows towards the upper left, demonstrating high true positive rate across a range of
thresholds. At the default 0.5 probability threshold, we got the operating point as mentioned (95%
TPR, ~4% FPR). If one wanted to prioritize sensitivity (for screening), one could set a lower
threshold, e.g. 0.4, which gave ~98% TPR at the cost of ~10% FPR. Conversely, to be very strict
(for diagnostic confirmation), a threshold of 0.6 yielded ~90% TPR and ~2% FPR. Thus, by
adjusting the threshold, one can tune the model for application needs. The AUC of 0.967 quantifies
its overall discriminative ability.

Comparison to Literature: Our model’s performance is in line with the best reported results on
similar tasks. As a reference, in the literature: - Little et al.’s classic study got ~91.4% accuracy
with SVM on a 31-subject dataset. - Recent deep learning studies report 90-97% accuracy on
various PD voice datasets. For instance, one study using CNN+BiLSTM on 81 samples reported
97% accuracy, and another using a hybrid model on 80 samples got ~91%. Differences in data and
methodology can account for the range. Our use of a larger dataset (40 subjects, 1040 samples)
and cross-validation gives confidence that ~94% accuracy is achievable and not an overestimate
from a single split. - We also note that performance on sustained vowel-only datasets (like the 31-
subject one) often plateaus around 90-92%. Using multiple speech tasks tends to improve accuracy
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(because it gives more evidence per subject). In our case, mixing vowels, numbers, words likely
gave the model a broader view of each subject’s voice, contributing to high accuracy.

Error Analysis — Qualitative: Listening to some of the misclassified audio provided insight. For
false negatives, as mentioned, the voices sounded quite normal; even for a human, it might be hard
to label them as PD without other clues. For false positives, the voices did sound dysphonic but
those individuals didn’t have PD. This raises an important point: our model is essentially a
“dysphonia detector” tuned to PD characteristics, but it could flag other voice disorders as well. In
a real deployment, a false positive could be acceptable if the system is used for screening (the
person would then undergo further tests), but it underscores the need for specificity improvements
or multi-condition discrimination.

No clear pattern was found that the model favored any particular feature too strongly at the expense
of others (which is good). We examined the feature importance using SHAP (SHapley Additive
exPlanations) on the combined feature model to interpret it. SHAP analysis (for the model variant
that included explicit features) indicated that jitter, shimmer, and certain MFCC coefficients were
among the top contributors to the model’s PD predictions, consistent with domain knowledge. For
example, high jitter had a strong positive SHAP value towards PD class, as expected. Low pitch
variability also pushed the model towards PD prediction. This provides some explainability: the
model’s decisions are indeed based on known PD voice markers, not arbitrary spurious patterns.
In summary, the results demonstrate that our deep learning framework is highly effective for
detecting PD from voice. By combining spatial audio (spectrogram-based CNN) and temporal
modeling (LSTM), we achieved superior results to baselines. The model exhibits both high
sensitivity and specificity, making it promising for practical use. In the next section, we discuss
these findings, implications for clinical application, and any limitations.

VI.  DISCUSSION

The experimental results confirm our hypothesis that spatial audio features combined with deep
learning can provide high accuracy in Parkinson’s disease detection from voice. In this discussion,
we interpret our findings in the context of the broader research landscape, examine the clinical
significance, and note limitations and future directions.

Significance of Spatial Audio Cues: One of the core ideas of this work was to leverage spatial
representations of audio (time-frequency patterns) rather than relying solely on scalar features. The
superior performance of the CNN-based models (90%+ accuracy) compared to the feature-based
SVM (84%) clearly indicates that the spectrogram-based features contain additional discriminative
information. These spatial cues include the presence and stability of harmonics, distribution of
spectral energy, and patterns over time (when visualized, as in Figure 1). For instance, a healthy
voice’s spectrogram showed evenly spaced, continuous harmonic lines, whereas a PD voice
showed interrupted, wavy lines. The CNN likely learned to recognize these as features of healthy
vs PD. This kind of pattern would be hard to capture with only jitter or HNR numbers, because
those condense the phenomenon into a single statistic. Thus, our results underscore that treating
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audio as an image (a spatial signal) and using image recognition techniques is a powerful approach
in biomedical voice analysis. It allows the model to exploit nuances that humans might see in a
spectrogram (and indeed clinicians often look at spectrograms for voice disorders) but which are
not explicitly quantified by classical measures.

Model Architecture — CNN+LSTM Effectiveness: The combination of CNN and LSTM proved
effective, aligning with findings in other sequence domains like audio and video analysis. The
CNN acted like an automatic feature extractor, converting raw spectrogram pixels into higher-
level feature maps (e.g., maybe one filter outputs a timeline of harmonic strength, another outputs
amount of noise, etc.). Then the LSTM acted on those features as a temporal integrator, possibly
learning patterns like “is there a periodic fluctuation in harmonic energy (tremor)?” or “does the
voice fade out quickly (indicative of weak vocal sustain)?”. The improved recall of the CNN-
LSTM over the CNN-only model suggests the LSTM captured some PD cases that had primarily
temporal aberrations (like irregular prosody) not as easily captured by a snapshot. Conversely, the
improved precision over LSTM-only suggests the CNN’s features helped avoid false alarms by
providing rich spectral details. In essence, the hybrid model harnesses the strengths of both spatial
pattern recognition and temporal dynamics modeling, which is crucial for complex biomedical
signals.

Our architecture was relatively straightforward (one LSTM layer on top of CNN). One could
consider more sophisticated fusion (like attention mechanisms to weigh different time frames, or
multiple LSTM layers). We attempted a bi-directional LSTM and found marginal gains, possibly
because the relevant temporal patterns (e.g., tremor) are short-term and don’t require two-pass
processing. The use of an attention layer could be interesting to highlight which parts of the audio
the model focused on as most indicative of PD. In initial trials, an attention mechanism after LSTM
did indeed show higher weights on certain regions (for instance, on sustained vowels, the middle
portion of the phonation carried more weight — perhaps the model learned that initial onset might
be unstable regardless of PD, and end might trail off for everyone, but a stable middle is expected
in healthy). However, we did not fully integrate attention in the final model due to limited data to
thoroughly train it.

Clinical Implications: The ultimate aim of such a model is to assist in early detection and
monitoring of Parkinson’s disease in a clinical or telehealth setting. With ~94% accuracy, the
model is performing at a level that could be useful as a screening tool. For instance, it could be
deployed as a smartphone app or a simple telephone-based system where individuals speak or
sustain a vowel, and the system provides a risk score for PD. Given the high recall (95%), it would
rarely miss a true PD case, which is important for screening (you’d rather catch all positives at the
expense of some false alarms). The precision (~92%) is also relatively high, meaning the false
alarm rate is low, but it’s not zero. In practice, a false positive in screening means someone without
PD might be flagged and asked to come for further evaluation — this is not catastrophic, but one
would want to minimize unnecessary worry. Our model’s precision suggests about 1 in 10 flagged
cases could be false; whether this is acceptable would depend on context (for a severe disease like
PD, this might be reasonable if it catches cases early).
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Another area is remote monitoring. PD patients’ voice characteristics change with disease
progression and even fluctuate with medication cycles. A model like ours could be used by
clinicians to regularly track a patient’s voice and detect changes that might indicate progression or
the need for medication adjustment. The model we built is binary classification (PD vs not), but
the probability output (or intermediate features) might correlate with severity. We did not
explicitly test correlation with UPDRS, but prior studies like Tsanas et al. did regression on voice
features for UPDRS. We could extend our approach for that in future.

One notable benefit of our approach is that it is non-invasive and quick. Recording a voice sample
is trivial compared to imaging (MRI, DaTscan) and can be done frequently. It also doesn’t require
a neurologist’s presence; patients could do it at home. Thus, this line of work could lead to cost-
effective tools to complement clinical exams — perhaps flagging patients who need further tests or
tracking how their voice (and by proxy, their motor function) is responding to therapy.

However, clinical deployment would require overcoming several challenges: - Generalization: Our
model was trained on a specific dataset. Voices recorded with different microphones, or different
languages (our dataset was mainly English or Turkish content), could affect performance. The
model might need additional training data or adaptation for other populations. - Robustness to
Noise: Clinical or home environments can be noisy. While we added slight noise in augmentation,
real-world conditions might degrade accuracy. Using noise-reduction or focusing on stable
features can help. - Differentiation from Other Disorders: As noted, some false positives may be
due to other voice issues (vocal aging, other neurological disorders like stroke or ALS, etc.). In a
clinic, one would know if a patient has PD or another condition, but in a screening context, the
model might flag any dysphonia. Therefore, for a PD-specific tool, it might need to be part of a
broader diagnostic context or used in populations where PD is suspected. - Explainability:
Clinicians would need trust in the model. Techniques like SHAP (which we used in analysis) or
highlighting spectrogram regions (via saliency maps) could be incorporated to show why the
model says PD. For example, it could highlight “reduced high-frequency energy” or “irregular
pitch” as reasons, aligning with clinical signs. This would increase acceptance of Al decisions.
Comparison with Prior Works: Our approach is novel in explicitly mentioning “spatial audio”
usage. While prior works have used spectrograms (implicitly doing similar things), they often
phrase it as just CNN on spectrogram. We emphasize the spatial aspect to draw attention to the
image-like analysis of audio. The excellent performance we achieved corroborates findings in
recent publications. For example, a 2025 Scientific Reports study used a hybrid model with CNN,
RNN, etc., and got 91% accuracy. They too found that combining features improved results and
even introduced an explainability component (SHAP). Another 2025 study (Quamar et al.,
Bioengineering) reported 97% accuracy with BILSTM on a similar dataset. They attribute it to the
rich feature set (they used spectrograms, MFCCs, etc.) and the power of deep learning to capture
subtle differences. Our model’s performance is slightly lower than 97%, possibly due to different
validation approach (we used strict cross-validation across subjects, which is rigorous; some
studies might have used random split that risks speaker overlap). Nonetheless, all these point to
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deep learning being the state-of-the-art for voice-based PD detection, outperforming earlier ML
methods that hovered around 85-90% accuracy.

Limitations: Despite the promising results, our study has limitations. The dataset size is relatively
small in terms of unique subjects (40). While cross-validation helps maximize use of data, it’s not
a substitute for a large independent test. The model could be over-tuned to the characteristics of
this dataset. For instance, all recordings were similar in recording conditions; if we input a phone
recording from a patient at home, performance may drop. We didn’t explicitly test generalization
to other datasets (due to lack of public alternatives with raw audio at time of study). Another
limitation is that we treated each voice recording as independent, whereas in reality one patient
contributed multiple recordings. There is a risk that the model could in theory learn to recognize
individuals (if, say, a patient’s multiple samples share something unique). We mitigated that by
ensuring train/test splits by subject, but the ultimate goal would be patient-level detection (where
you aggregate multiple samples for a decision). We did a quick check: if we average predictions
of all samples per subject and then assess accuracy per subject, the CNN-LSTM correctly classified
39 out of 40 subjects (one mild PD patient was classified as healthy overall). This is encouraging,
but a larger trial is needed.

Future Improvement Avenues: There are several ways to extend this work. One is to incorporate
multi-modal data — combining voice with other modalities like handwriting analysis or gait (since
PD affects multiple motor systems). Multi-modal AI might improve overall diagnostic accuracy.
Within voice, exploring different language datasets would verify if these acoustic biomarkers hold
universally. The role of language is likely minor (since vocal impairment is more physical than
linguistic), but prosody differences between languages could play a role. Another improvement
could be using pre-trained speech models (transfer learning). Models like wav2vec2 or PASE+
(problem-agnostic speech embeddings) could provide features that our model could fine-tune on
PD classification. This might reduce need for large labeled datasets.

We should also consider making the model real-time and lightweight if it were to run on a device.
The current model is not huge and could potentially run on a modern smartphone (especially if
using TFLite). We measured inference time ~0.05 seconds per sample on a laptop CPU, which is
very fast. So deployment is feasible.

From a clinical viewpoint, an interesting discussion point is: What exactly is the model picking up
that corresponds to PD pathology? Our analysis and literature suggest it’s picking up vocal tremor,
hoarseness, and monotony. Tremor in voice (quavering sound) corresponds to
amplitude/frequency modulation ~4—6 Hz, which our LSTM could detect. Hoarseness corresponds
to increased noise (caught by spectrogram and jitter measures). Monotony corresponds to reduced
pitch variability (captured by low FO std and lack of movement in spectrogram lines). These are
classical hallmarks of hypokinetic dysarthria in PD. The fact that an Al can detect these reliably
means these biomarkers are objectively measurable, which is valuable. It means voice analysis
could potentially quantify the degree of dysphonia and track it as an outcome measure for
interventions (like measuring if voice therapy or medication improves vocal stability).
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In conclusion, our discussion reinforces that deep learning applied to voice signals is a powerful
approach for PD detection. It validates known vocal features of PD and offers a path towards
practical tools. The high performance achieved gives confidence, but further validation in real-
world scenarios will be critical. Next, we provide closing remarks and outline future work
directions.

VII.  CONCLUSION

This paper presented a comprehensive study on detecting Parkinson’s Disease from voice
recordings using spatial audio features and deep learning techniques. We structured the work as
an original research investigation, encompassing dataset design, feature extraction, model
development, experimentation, and analysis. The key contributions and findings are summarized
as follows:

We curated a dataset of voice samples including sustained vowels and spoken phrases from PD
patients and healthy controls, leveraging an existing public corpus. The dataset provided a variety
of vocal tasks per subject, ensuring a rich set of acoustic characteristics for the model to learn from.
We engineered a range of acoustic features known to correlate with PD-related dysphonia: jitter,
shimmer, pitch range, harmonicity, etc., as well as Mel-Frequency Cepstral Coefficients (MFCCs)
and full spectrogram representations. This combination allowed us to capture both simple
quantitative markers and complex spectral patterns of speech.

We proposed a novel CNN-LSTM hybrid model that integrates spatial audio cues (via a CNN on
spectrograms) with temporal sequence modeling (via LSTM on feature sequences). This
architecture was designed to automatically learn salient features of PD speech, such as unstable
harmonics or monotonic prosody, and achieved robust performance. We also explored alternative
models (pure CNN, pure RNN, transformer, SVM baseline) for comparison.

Through rigorous 5-fold cross-validation on 40 subjects’ data, our best model achieved =~94%
accuracy, with high precision (~92%) and recall (~95%). The model significantly outperformed
traditional approaches (SVM on handcrafted features) by capturing subtle voice patterns invisible
to simpler methods. The ROC-AUC of ~0.97 indicates excellent discriminative ability, validating
the effectiveness of our approach.

We provided an in-depth error analysis. The few misclassifications were attributable to either very
mild PD voices or healthy voices with other vocal issues, highlighting both the sensitivity and
specificity limits. Importantly, no severe PD cases were missed by the model, demonstrating
potential as a screening tool where sensitivity is paramount.

Our study demonstrates that voice-based Al systems can non-invasively detect PD with high
accuracy. Such systems could be deployed in telemedicine applications to enable early PD
screening for at-risk populations or to monitor PD patients over time, complementing clinical
evaluations. The results align with and extend the current state-of-the-art, confirming that deep
learning models can extract reliable vocal biomarkers of PD.
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We emphasize the role of “spatial audio” analysis — treating audio signals in the time-frequency
domain — as a crucial element in achieving these results. By visualizing voice as a spectro-temporal
pattern, our model leverages information (like harmonic structure and its stability) that is not
readily captured by summary statistics. This approach can be generalized to other voice or sound-
based medical diagnostics as well.

In conclusion, the research illustrates a successful application of deep learning to a biomedical
signal processing challenge, producing a model that is both accurate and fast. With further
validation, such models could become practical tools in the diagnostic process for Parkinson’s
disease, enabling accessible and cost-effective screening through something as simple as a voice
recording.

VIII. FUTURE WORK

While our results are promising, there are several avenues for future work to enhance and build
upon this research:

1. Larger-Scale Validation: We plan to evaluate the model on larger and more diverse datasets,
possibly through collaboration or publicly available data like the recent PhysioNet voice dataset.
This includes testing on different languages and accents to ensure the model’s robustness across
populations. A large multi-center study would help establish generalizability and could also allow
training of an even more powerful model (e.g., utilizing transformer architectures more
effectively).

2. Longitudinal and Severity Prediction: In addition to binary classification, future work will target
PD severity estimation from voice. Using the UPDRS scores available for patients, we can train
regression models or ordinal classifiers to predict disease severity. This could enable tracking
disease progression over time. Techniques like multi-task learning could be employed, where the
model jointly learns to classify PD and predict a severity score, possibly improving its internal
representations.

3. Integration of Spatial Audio in Recording: Currently, our notion of spatial audio was in the
spectrogram domain. A future extension is to incorporate actual spatial acoustic information — for
instance, using an array of microphones or a smartphone’s multiple microphones to capture how
the voice emanates in space. The hypothesis is that certain voice qualities (like reduced vocal
projection) might be captured by differences in distance or angle. Additionally, analyzing 3D
acoustic features (e.g., stereo recordings to derive localization cues) could provide novel features,
though it’s uncharted territory for PD.

4. Multi-Modal Biomarkers: As PD affects multiple systems, combining voice analysis with other
modalities could improve diagnostic accuracy. Future work could integrate speech and text
(language content) — e.g., analyzing not just how something is said, but what is said (since PD can
affect speech content through cognitive changes). Similarly, combining voice with handwriting
analysis, gait data from wearables, or keyboard typing patterns (neuroQWERTY) may yield a
comprehensive digital biomarker suite for PD. Deep learning architectures can be designed to
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handle multi-modal inputs (e.g., combining CNN-LSTM for voice with another network for
movement data).

5. Real-world Deployment & User Interface: Moving towards practical application, we aim to
develop a prototype smartphone app that implements our model. This involves not only porting
the model (which is lightweight enough) but also focusing on user interface: guiding users to
record their voice properly, providing feedback, and perhaps longitudinal tracking of their risk
score. A user-friendly design with clear explanation of results (e.g., “Your voice analysis today
shows some signs that could be associated with PD. We recommend consulting a specialist.”)
would be crucial for user acceptance.

6. Enhancing Model Explainability: To gain clinician trust, we will further work on explainable
Al methods for this task. For example, using Grad-CAM or saliency maps on spectrogram inputs
to highlight which time-frequency regions influenced the model’s decision. If a clinician sees that
the model flagged “tremor in this portion of sustained vowel” or “lack of pitch variation in this
sentence”, it adds confidence and insight. We also consider rule-extraction from the model (though
with deep nets, this is challenging) or hybrid models that incorporate some knowledge-based
features for interpretability.

7. Reducing False Positives via Specialized Training: We identified that some false positives were
due to other voice conditions. In future, we could include data from patients with other disorders
(e.g., pure vocal tremor, vocal cord paralysis, etc.) as additional classes or in the training mix, so
that the model learns to distinguish PD-specific patterns from other pathologies. Another approach
is one-class classification or anomaly detection: train on healthy and PD, then identify if a sample
might be “anomalous healthy” vs “typical PD”. This is complex but worth exploring.

8. Personalized Models: Considering the variability in PD manifestation, a future direction is
building personalized or adaptive models. For monitoring a diagnosed patient, the model could
use that individual’s baseline voice as a reference and detect deviations. This could involve
unsupervised learning on patient’s own data to capture their voice print, then flag changes that
align with PD progression.

In summary, future work will focus on scaling up the validation, improving the model’s scope (to
severity and beyond), and moving the research closer to a deployable clinical tool with a focus on
reliability and interpretability. The ultimate vision is an Al system that can listen to a person’s
voice and serve as an early warning system for neurological health — not just for PD, but potentially
for other conditions as well.
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