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Abstract—Financial fraud detection has evolved from traditional rule-based systems to
sophisticated machine learning approaches, with Graph Neural Networks (GNNs) emerging
as a powerful paradigm for modeling complex relational patterns in financial data. This
comprehensive review examines recent advances in GNN-based fraud detection systems,
analyzing ten state-of-the-art methods published between 2023-2025. We systematically
categorize GNN architectures into memory-augmented, heterogeneous, temporal-aware,
and community-detection frameworks. Key innovations include adaptive sampling
mechanisms, risk diffusion models, attention-based aggregation, and semi-supervised
learning approaches. Our review identifies critical research gaps including model
interpretability, real-time processing constraints, adversarial robustness, and cross-domain
generalization. We conclude with future directions emphasizing federated learning,
explainable Al, and hybrid architectures that balance accuracy with computational
efficiency.

Index Terms—Graph Neural Networks, Fraud Detection, Financial Security, Deep
Learning, Transaction Networks, Anti-Money Laundering.

I. INTRODUCTION
Financial fraud represents a critical challenge in the global economy, with losses exceeding
hundreds of billions of dollars annually. Traditional fraud detection systems rely on handcrafted

rules and statistical methods, which struggle to capture the complex, evolving patterns of modern
fraud schemes. The interconnected nature of financial transactions creates rich relational structures
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that are inadequately represented by conventional machine learning approaches treating data points
independently.

Graph Neural Networks (GNNs) have emerged as a transformative technology for fraud detection,
offering the ability to model entities (accounts, merchants, users) as nodes and their interactions
(transactions, transfers) as edges. This graph-based representation naturally captures the relational
and structural patterns inherent in financial fraud, including collusion rings, money laundering
chains, and coordinated attack patterns [1].

A. SCOPE AND CONTRIBUTIONS

This review systematically examines ten recent IEEE-indexed publications on GNN-based fraud
detection, spanning credit card fraud, transaction fraud, anti-money laundering, and systemic risk
prediction. Our key contributions include:

(1) A comprehensive taxonomy of GNN architectures for fraud detection, categorizing approaches
by their core mechanisms (memory-augmented, heterogeneous, temporal, community-based).

(2) Comparative analysis of methodologies, including graph construction strategies, feature
engineering, learning paradigms, and aggregation mechanisms.

(3) Performance benchmarking across different fraud detection scenarios and datasets, identifying
strengths and limitations of each approach.

(4) Critical discussion of deployment challenges, including computational complexity, model
interpretability, adversarial attacks, and regulatory compliance.

(5) Future research directions addressing current gaps and emerging opportunities in GNN-based
fraud detection.
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Fig. 1. Performance comparison (F1-Score) of reviewed GNN methods on fraud detection tasks

B. PAPER ORGANIZATION

Section Il provides technical background on GNNs and fraud detection. Section Il presents our
taxonomy and detailed review of the ten selected papers. Section IV offers comparative analysis
and performance evaluation. Section V discusses challenges and limitations. Section VI outlines
future research directions, and Section VII concludes the paper.
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Il. TECHNICAL BACKGROUND

A. Graph Neural Networks Fundamentals

Graph Neural Networks extend deep learning to graph-structured data through iterative message
passing and aggregation. A graph G = (V, E) consists of nodes V and edges E. GNNs learn node
representations by aggregating information from neighbors as shown in (1):

h*) = UPDATE®(h®, AGGREGATE®({h,®: u € N(v)})) (1)

where h,® is the node representation at layer k, N(v) denotes the neighbors of v, and UPDATE and
AGGREGATE are learnable functions. Common GNN variants include Graph Convolutional
Networks (GCN) [2], GraphSAGE [3], Graph Attention Networks (GAT) [4], and Graph
Isomorphism Networks (GIN) [5].

B. Fraud Detection Challenges

Financial fraud detection presents unique challenges: (1) Class imbalance with fraud cases
representing typically less than 1% of transactions; (2) Evolving fraud patterns requiring adaptive
models; (3) Camouflage tactics where fraudsters mimic legitimate behavior; (4) Limited labeled
data due to expensive manual review; (5) Real-time processing requirements for transaction
authorization; (6) Interpretability needs for regulatory compliance and investigation [6].

Input Graph Transaction Network GNN Layer 1 Message Passing GNN Layer K Aggregation
Prediction Fraud Score

GXN Layer 1

Ispat Graph T Prediction

TR —
G Liaver B /

e 1

Fig. 2. General architecture of GNN-based fraud detection showing message passing,
aggregation, and prediction.

I1l. TAXONOMY AND LITERATURE REVIEW

A. Memory-Augmented GNN Approaches

LGM-GNN: Li et al. [1] propose a Local and Global aware Memory-based GNN that addresses
the challenge of capturing both local transaction patterns and global fraud schemes. The
architecture incorporates two memory modules: a local memory bank storing neighbor-specific
patterns and a global memory capturing fraud ring behaviors. The model uses attention
mechanisms to dynamically retrieve relevant memory entries during inference.
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The local memory component models individual account behaviors and transaction patterns, while
the global memory identifies coordinated fraud through graph-level pattern matching. This dual-
memory architecture achieved superior performance on benchmark datasets by reducing false
positives through better context understanding.

B. Dynamic Risk Propagation Models

FinGuard-GNN: Huang et al. [7] introduce a cascaded risk diffusion mechanism inspired by
epidemic spreading models. The framework consists of three key components: Adaptive Temporal
Pooling (ATP) that captures time-varying transaction patterns, Structural Edge Weighting (SEW)
that assigns importance to different edge types, and Risk Propagation Network that models fraud
spread through transaction graphs.

The ATP module uses learnable time decay functions to weight recent transactions more heavily
while maintaining historical context. SEW employs meta-learning to automatically determine edge
type importance based on fraud detection performance. Experimental results on real-world
banking data demonstrated 12% improvement in F1-score over baseline GNN methods.

C. Heterogeneous Graph Neural Networks

Heterogeneous GAT for Credit Card Fraud: Sha et al. [8] develop a heterogeneous graph attention
network specifically designed for credit card fraud detection using the IEEE-CIS dataset. The
model constructs a heterogeneous graph with multiple node types (cardholders, merchants,
devices, IP addresses) and edge types (transactions, shared attributes, temporal sequences).

The architecture employs type-specific attention mechanisms that learn different aggregation
strategies for each node and edge type. Temporal attention layers capture the sequential nature of
transactions, enabling detection of unusual timing patterns [9].

D. Adaptive Sampling and Aggregation

ASA-GNN: Tian et al. [10] address two critical challenges in fraud detection GNNs: fraudster
camouflage and over-smoothing in deep networks. ASA-GNN introduces an adaptive sampling
strategy that selectively samples neighbors based on their relevance to fraud detection, rather than
uniform or random sampling.

The sampling module employs a reinforcement learning agent that learns to prioritize informative
neighbors while filtering out camouflage connections that fraudsters deliberately create to appear
legitimate. Experimental validation on YelpChi and Amazon datasets showed ASA-GNN
maintains high precision even with 4-5-layer depths, where standard GNNs experience significant
performance degradation.

E. Semi-Supervised Learning Approaches

GTAN: Zhu et al. [11] address the practical challenge of limited labeled fraud data. The Graph
Temporal Attention Network combines attribute-driven graph construction with semi-supervised
learning to leverage both labeled fraud cases and the vast amount of unlabeled transaction data.
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The model constructs temporal transaction graphs where edges represent sequential transactions
and nodes encode transaction attributes. A novel risk propagation algorithm diffuses fraud labels
through the graph based on structural proximity and behavioral similarity. GTAN achieves
competitive performance with only 1% labeled data, making it particularly valuable for real-world
deployment where manual labeling is expensive.

F. Community Detection for AML

Group-Aware Deep Learning: Cheng et al. [12] focus on anti-money laundering (AML) scenarios
where fraudsters operate in organized groups to disguise illicit funds. The group-aware framework
explicitly models community structures in transaction networks, identifying suspicious money
flow patterns at both individual and group levels.

The architecture employs hierarchical graph pooling to identify communities, followed by
community-level fraud detection. A novel group anomaly score combines individual suspicious
behaviors with group-level patterns such as circular transfers and coordinated timing.

TABLE | COMPARISON OF GNN-BASED FRAUD DETECTION METHODS

Method Core Innovation Graph Type Learning
LGM-GNN [1] Dual memory modules | Homogeneous Supervised
FinGuard [7] Risk diffusion Dynamic Supervised
Het-GAT [8] Type-specific attention | Heterogeneous Supervised
ASA-GNN [10] Adaptive sampling Homogeneous Supervised
GTAN [11] Risk propagation Temporal Semi-supervised
Group-Aware [12] Community detection Homogeneous Supervised
Systemic Risk [13] | Quantile regression Financial network | Supervised
Subgraph-GNN [14] | Motif integration Homogeneous Supervised
Relation-Aware [15] | Relation semantics Heterogeneous Supervised

G. Systemic Risk Prediction

Balmaseda et al. [13] extend GNN applications beyond individual fraud detection to systemic risk
prediction in financial networks. The approach models banks, institutions, and their
interconnections to predict contagion risk and financial instability. The framework employs GNN-
based quantile regression to predict risk distributions rather than point estimates.
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H. Subgraph Pattern Enhancement

Miao et al. [14] recognize that certain subgraph structures (motifs) are strongly indicative of fraud,
such as star patterns (one account transacting with many), chain patterns (sequential transfers), and
cycle patterns (circular money flows). Their framework explicitly identifies and leverages these
subgraph motifs. The model employs motif counting algorithms to extract subgraph features,
which are combined with learned GNN embeddings through a fusion network.

I. Relation-Aware Methods

Li et al. [15] extend heterogeneous GNN modeling through relation-aware message passing that
explicitly models the semantics of different relationship types. The framework introduces relation-
specific transformation matrices and attention coefficients, allowing the model to distinguish
between transaction edges, ownership edges, and behavioral similarity edges.

IV. COMPARATIVE ANALYSIS

A. Performance Evaluation

Performance evaluation across different methods reveals several insights. On homogeneous graphs
with credit card fraud, ASA-GNN and Het-GAT achieve the highest F1-scores (0.89-0.92),
significantly outperforming traditional ML methods (0.75-0.82). For heterogeneous transaction
networks, relation-aware methods show 8-15% improvement over homogeneous GNNs by
properly modeling edge type semantics.

In anti-money laundering tasks, group-aware methods demonstrate superior recall (0.85-0.91)
compared to individual-focused approaches (0.72-0.78), though with slightly lower precision.
Semi-supervised GTAN achieves 94% of fully-supervised performance with only 1% labeled data,
representing a significant practical advantage.

0.00.20.4 0.6 0.8 1.0 0.84 0.92 0.88 0.90 0.80 0.86 0.82 0.88 0.90 LGM FG Het ASA GTAN
Group Sys Sub Rel GNN Methods F1-Score

B. Computational Complexity

Computational complexity varies significantly across methods. Standard GNN message passing
has complexity O (|E| - d - K) where |E| is edge count, d is embedding dimension, and K is layer
depth. Memory-augmented methods add O (M - d) for memory operations where M is memory
size.

Heterogeneous GNNs increase complexity by a factor of |R| (number of relation types) due to type-
specific transformations. For real-time deployment, ASA-GNN and standard Het-GAT show the
best latency profiles (< 100ms for 10K node graphs), while memory-augmented and community
detection methods require 200-500ms.
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V. CHALLENGES AND LIMITATIONS

A. Scalability and Real-Time Processing

Most reviewed methods demonstrate effectiveness on graphs with millions of nodes, but real-
world financial networks contain billions of transactions. Mini-batch training and sampling
strategies help but may miss long-range fraud patterns. Real-time fraud detection requires sub-
second inference, challenging for complex GNN architectures with deep layers and attention
mechanisms [16].

B. Interpretability and Explainability

Financial institutions require explainable fraud detection for regulatory compliance (Basel IlI,
GDPR), customer communication, and fraud investigation. Deep GNNSs operate as black boxes,
making it difficult to explain why specific transactions were flagged [17]. Attention weights
provide some interpretability but often fail to capture complete reasoning chains. Subgraph-based
methods offer better interpretability by identifying specific patterns, but may sacrifice predictive
performance.

C. Adversarial Robustness

Fraudsters actively adapt to detection systems, creating adversarial scenarios where attackers
manipulate graph structures to evade detection. Camouflage attacks involve creating legitimate-
looking connections, while graph poisoning attacks inject false edges during training [18]. Most
reviewed methods do not explicitly address adversarial robustness. ASA-GNN's adaptive sampling
provides some robustness, but systematic evaluation of adversarial attacks on GNN fraud detectors
is limited.

D. Concept Drift and Model Adaptation

Fraud patterns evolve continuously as fraudsters develop new tactics and exploit system
vulnerabilities. Models trained on historical data experience concept drift, where the fraud
distribution changes over time. While FinGuard-GNN and temporal methods address some
temporal aspects, none provide comprehensive online learning frameworks. Continual learning
approaches that update models with new fraud patterns without catastrophic forgetting of previous
patterns are needed.

E. Privacy and Federated Learning

Financial data privacy regulations restrict data sharing across institutions, limiting the ability to
build comprehensive fraud detection models. Federated learning enables collaborative model
training without sharing raw data, but applying federated learning to GNNs introduces challenges
due to graph partitioning across institutions [19]. Cross-institution fraud patterns are difficult to
detect in federated settings.
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VI. FUTURE RESEARCH DIRECTIONS

A. Explainable GNN Architectures

Future work should focus on inherently interpretable GNN designs that maintain high performance
while providing transparent fraud detection reasoning. Promising directions include: (1)
Prototype-based learning where fraud cases are explained by similarity to prototypical fraud
patterns; (2) Rule-enhanced GNNs that combine neural learning with interpretable logical rules;
(3) Causal GNNs that identify causal fraud factors rather than spurious correlations [20].

B. Few-Shot and Zero-Shot Fraud Detection

Emerging fraud types have minimal labeled examples, requiring few-shot learning capabilities.
Meta-learning approaches that learn fraud detection strategies transferable to new fraud types show
promise [21]. Zero-shot detection using semantic descriptions of fraud schemes could enable
proactive detection of novel fraud patterns before they cause significant damage.

C. Multi-Modal Fraud Detection

Financial fraud detection can benefit from integrating multiple data modalities beyond transaction
graphs: text (merchant descriptions, customer communications), images (check images, 1D
documents), time series (account activity patterns), and behavioral biometrics (typing patterns,
mouse movements). Multi-modal GNNs that fuse graph structure with other modalities through
attention mechanisms could capture complementary fraud signals.

D. Temporal GNNs with Long-Range Dependencies

Current temporal GNN methods focus on local temporal patterns. Sophisticated fraud schemes
like complex money laundering operations span months and involve long-range temporal
dependencies. Integrating Transformer architectures with GNNs could capture both spatial graph
structure and long-range temporal patterns [22].

E. Robust and Certified GNN Defenses

Developing provably robust GNN architectures resilient to adversarial attacks is critical.
Approaches include: (1) Adversarial training with diverse attack scenarios; (2) Randomized
smoothing for certified robustness guarantees; (3) Robust aggregation functions less sensitive to
manipulated neighbors [23]. Game-theoretic frameworks modeling the strategic interaction
between fraud detectors and adversaries could inform robust system design.

F. Federated and Privacy-Preserving GNNs

Advanced federated GNN algorithms addressing graph partitioning challenges, communication
efficiency, and cross-institution pattern detection are needed. Privacy-preserving techniques
including secure aggregation protocols, differential privacy mechanisms, and homomorphic
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encryption for secure graph operations should be developed [24]. Federated transfer learning could
enable institutions to benefit from fraud patterns learned by others while maintaining data privacy.

G. Integration with Traditional Systems

Hybrid systems combining GNN approaches with rule-based systems, anomaly detection, and
domain expertise offer robust fraud detection. GNNs could focus on complex relational patterns
while rule-based systems handle known fraud typologies. Ensemble methods combining multiple
GNN architectures with diverse inductive biases could improve robustness [25].

VIl. CONCLUSION

THIS comprehensive review examines the state-of-the-art in Graph Neural Network-based fraud
detection, analyzing ten recent methods that demonstrate the power of graph-based learning for
financial security. GNNs have emerged as a transformative technology, offering superior
performance over traditional machine learning by explicitly modeling the relational and structural
patterns inherent in financial fraud.

Our taxonomy categorizes approaches into memory-augmented, dynamic risk propagation,
heterogeneous, adaptive sampling, semi-supervised, community-aware, systemic risk prediction,
and subgraph pattern-enhanced frameworks. Performance analysis reveals that modern GNN
methods achieve F1-scores of 0.85-0.92 on benchmark datasets, significantly outperforming
traditional approaches.

Despite impressive progress, significant challenges remain. Scalability to billion-edge graphs,
real-time inference requirements, model interpretability for regulatory compliance, adversarial
robustness against adaptive fraudsters, concept drift handling, and privacy-preserving learning all
require further research. Future research directions include explainable GNN architectures, few-
shot and zero-shot learning, multi-modal integration, temporal models with long-range
dependencies, provably robust defenses, federated learning, and hybrid systems.

The field of GNN-based fraud detection is rapidly evolving, driven by both academic innovation
and practical necessity. Continued research addressing current limitations while maintaining focus
on practical deployment will be essential for realizing the full potential of GNNs in safeguarding
the financial system.
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