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Abstract—Financial fraud detection has evolved from traditional rule-based systems to 

sophisticated machine learning approaches, with Graph Neural Networks (GNNs) emerging 

as a powerful paradigm for modeling complex relational patterns in financial data. This 

comprehensive review examines recent advances in GNN-based fraud detection systems, 

analyzing ten state-of-the-art methods published between 2023-2025. We systematically 

categorize GNN architectures into memory-augmented, heterogeneous, temporal-aware, 

and community-detection frameworks. Key innovations include adaptive sampling 

mechanisms, risk diffusion models, attention-based aggregation, and semi-supervised 

learning approaches. Our review identifies critical research gaps including model 

interpretability, real-time processing constraints, adversarial robustness, and cross-domain 

generalization. We conclude with future directions emphasizing federated learning, 

explainable AI, and hybrid architectures that balance accuracy with computational 

efficiency.  

 

Index Terms—Graph Neural Networks, Fraud Detection, Financial Security, Deep 

Learning, Transaction Networks, Anti-Money Laundering.  

 

I. INTRODUCTION 

 

Financial fraud represents a critical challenge in the global economy, with losses exceeding 

hundreds of billions of dollars annually. Traditional fraud detection systems rely on handcrafted 

rules and statistical methods, which struggle to capture the complex, evolving patterns of modern 

fraud schemes. The interconnected nature of financial transactions creates rich relational structures 
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that are inadequately represented by conventional machine learning approaches treating data points 

independently. 

Graph Neural Networks (GNNs) have emerged as a transformative technology for fraud detection, 

offering the ability to model entities (accounts, merchants, users) as nodes and their interactions 

(transactions, transfers) as edges. This graph-based representation naturally captures the relational 

and structural patterns inherent in financial fraud, including collusion rings, money laundering 

chains, and coordinated attack patterns [1]. 

 

A. SCOPE AND CONTRIBUTIONS 

This review systematically examines ten recent IEEE-indexed publications on GNN-based fraud 

detection, spanning credit card fraud, transaction fraud, anti-money laundering, and systemic risk 

prediction. Our key contributions include: 

(1) A comprehensive taxonomy of GNN architectures for fraud detection, categorizing approaches 

by their core mechanisms (memory-augmented, heterogeneous, temporal, community-based). 

(2) Comparative analysis of methodologies, including graph construction strategies, feature 

engineering, learning paradigms, and aggregation mechanisms. 

(3) Performance benchmarking across different fraud detection scenarios and datasets, identifying 

strengths and limitations of each approach. 

(4) Critical discussion of deployment challenges, including computational complexity, model 

interpretability, adversarial attacks, and regulatory compliance. 

(5) Future research directions addressing current gaps and emerging opportunities in GNN-based 

fraud detection. 

 
Fig. 1. Performance comparison (F1-Score) of reviewed GNN methods on fraud detection tasks 

 

B. PAPER ORGANIZATION 

Section II provides technical background on GNNs and fraud detection. Section III presents our 

taxonomy and detailed review of the ten selected papers. Section IV offers comparative analysis 

and performance evaluation. Section V discusses challenges and limitations. Section VI outlines 

future research directions, and Section VII concludes the paper. 
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II. TECHNICAL BACKGROUND 

 

A. Graph Neural Networks Fundamentals 

Graph Neural Networks extend deep learning to graph-structured data through iterative message 

passing and aggregation. A graph G = (V, E) consists of nodes V and edges E. GNNs learn node 

representations by aggregating information from neighbors as shown in (1): 

 

hv
(k+1) = UPDATE(k)(hv

(k), AGGREGATE(k)({hu
(k): u ∈ N(v)})) (1)  

 

where hv
(k) is the node representation at layer k, N(v) denotes the neighbors of v, and UPDATE and 

AGGREGATE are learnable functions. Common GNN variants include Graph Convolutional 

Networks (GCN) [2], GraphSAGE [3], Graph Attention Networks (GAT) [4], and Graph 

Isomorphism Networks (GIN) [5]. 

 

B. Fraud Detection Challenges 

Financial fraud detection presents unique challenges: (1) Class imbalance with fraud cases 

representing typically less than 1% of transactions; (2) Evolving fraud patterns requiring adaptive 

models; (3) Camouflage tactics where fraudsters mimic legitimate behavior; (4) Limited labeled 

data due to expensive manual review; (5) Real-time processing requirements for transaction 

authorization; (6) Interpretability needs for regulatory compliance and investigation [6]. 

Input Graph Transaction Network GNN Layer 1 Message Passing GNN Layer K Aggregation 

Prediction Fraud Score  

 
Fig. 2. General architecture of GNN-based fraud detection showing message passing, 

aggregation, and prediction. 

 

III. TAXONOMY AND LITERATURE REVIEW 

 

A. Memory-Augmented GNN Approaches 

LGM-GNN: Li et al. [1] propose a Local and Global aware Memory-based GNN that addresses 

the challenge of capturing both local transaction patterns and global fraud schemes. The 

architecture incorporates two memory modules: a local memory bank storing neighbor-specific 

patterns and a global memory capturing fraud ring behaviors. The model uses attention 

mechanisms to dynamically retrieve relevant memory entries during inference. 
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The local memory component models individual account behaviors and transaction patterns, while 

the global memory identifies coordinated fraud through graph-level pattern matching. This dual-

memory architecture achieved superior performance on benchmark datasets by reducing false 

positives through better context understanding. 

 

B. Dynamic Risk Propagation Models 

FinGuard-GNN: Huang et al. [7] introduce a cascaded risk diffusion mechanism inspired by 

epidemic spreading models. The framework consists of three key components: Adaptive Temporal 

Pooling (ATP) that captures time-varying transaction patterns, Structural Edge Weighting (SEW) 

that assigns importance to different edge types, and Risk Propagation Network that models fraud 

spread through transaction graphs. 

The ATP module uses learnable time decay functions to weight recent transactions more heavily 

while maintaining historical context. SEW employs meta-learning to automatically determine edge 

type importance based on fraud detection performance. Experimental results on real-world 

banking data demonstrated 12% improvement in F1-score over baseline GNN methods. 

 

C. Heterogeneous Graph Neural Networks 

Heterogeneous GAT for Credit Card Fraud: Sha et al. [8] develop a heterogeneous graph attention 

network specifically designed for credit card fraud detection using the IEEE-CIS dataset. The 

model constructs a heterogeneous graph with multiple node types (cardholders, merchants, 

devices, IP addresses) and edge types (transactions, shared attributes, temporal sequences). 

The architecture employs type-specific attention mechanisms that learn different aggregation 

strategies for each node and edge type. Temporal attention layers capture the sequential nature of 

transactions, enabling detection of unusual timing patterns [9]. 

 

D. Adaptive Sampling and Aggregation 

ASA-GNN: Tian et al. [10] address two critical challenges in fraud detection GNNs: fraudster 

camouflage and over-smoothing in deep networks. ASA-GNN introduces an adaptive sampling 

strategy that selectively samples neighbors based on their relevance to fraud detection, rather than 

uniform or random sampling. 

The sampling module employs a reinforcement learning agent that learns to prioritize informative 

neighbors while filtering out camouflage connections that fraudsters deliberately create to appear 

legitimate. Experimental validation on YelpChi and Amazon datasets showed ASA-GNN 

maintains high precision even with 4–5-layer depths, where standard GNNs experience significant 

performance degradation. 

 

E. Semi-Supervised Learning Approaches 

GTAN: Zhu et al. [11] address the practical challenge of limited labeled fraud data. The Graph 

Temporal Attention Network combines attribute-driven graph construction with semi-supervised 

learning to leverage both labeled fraud cases and the vast amount of unlabeled transaction data. 
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The model constructs temporal transaction graphs where edges represent sequential transactions 

and nodes encode transaction attributes. A novel risk propagation algorithm diffuses fraud labels 

through the graph based on structural proximity and behavioral similarity. GTAN achieves 

competitive performance with only 1% labeled data, making it particularly valuable for real-world 

deployment where manual labeling is expensive. 

 

F. Community Detection for AML 

Group-Aware Deep Learning: Cheng et al. [12] focus on anti-money laundering (AML) scenarios 

where fraudsters operate in organized groups to disguise illicit funds. The group-aware framework 

explicitly models community structures in transaction networks, identifying suspicious money 

flow patterns at both individual and group levels. 

The architecture employs hierarchical graph pooling to identify communities, followed by 

community-level fraud detection. A novel group anomaly score combines individual suspicious 

behaviors with group-level patterns such as circular transfers and coordinated timing. 

 

TABLE I COMPARISON OF GNN-BASED FRAUD DETECTION METHODS 

Method Core Innovation Graph Type Learning 

LGM-GNN [1] Dual memory modules Homogeneous Supervised 

FinGuard [7] Risk diffusion Dynamic Supervised 

Het-GAT [8] Type-specific attention Heterogeneous Supervised 

ASA-GNN [10] Adaptive sampling Homogeneous Supervised 

GTAN [11] Risk propagation Temporal Semi-supervised 

Group-Aware [12] Community detection Homogeneous Supervised 

Systemic Risk [13] Quantile regression Financial network Supervised 

Subgraph-GNN [14] Motif integration Homogeneous Supervised 

Relation-Aware [15] Relation semantics Heterogeneous Supervised 

 

G. Systemic Risk Prediction 

Balmaseda et al. [13] extend GNN applications beyond individual fraud detection to systemic risk 

prediction in financial networks. The approach models banks, institutions, and their 

interconnections to predict contagion risk and financial instability. The framework employs GNN-

based quantile regression to predict risk distributions rather than point estimates. 
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H. Subgraph Pattern Enhancement 

Miao et al. [14] recognize that certain subgraph structures (motifs) are strongly indicative of fraud, 

such as star patterns (one account transacting with many), chain patterns (sequential transfers), and 

cycle patterns (circular money flows). Their framework explicitly identifies and leverages these 

subgraph motifs. The model employs motif counting algorithms to extract subgraph features, 

which are combined with learned GNN embeddings through a fusion network. 

 

I. Relation-Aware Methods 

Li et al. [15] extend heterogeneous GNN modeling through relation-aware message passing that 

explicitly models the semantics of different relationship types. The framework introduces relation-

specific transformation matrices and attention coefficients, allowing the model to distinguish 

between transaction edges, ownership edges, and behavioral similarity edges. 

 

IV. COMPARATIVE ANALYSIS 

 

A. Performance Evaluation 

Performance evaluation across different methods reveals several insights. On homogeneous graphs 

with credit card fraud, ASA-GNN and Het-GAT achieve the highest F1-scores (0.89-0.92), 

significantly outperforming traditional ML methods (0.75-0.82). For heterogeneous transaction 

networks, relation-aware methods show 8-15% improvement over homogeneous GNNs by 

properly modeling edge type semantics. 

In anti-money laundering tasks, group-aware methods demonstrate superior recall (0.85-0.91) 

compared to individual-focused approaches (0.72-0.78), though with slightly lower precision. 

Semi-supervised GTAN achieves 94% of fully-supervised performance with only 1% labeled data, 

representing a significant practical advantage. 

0.0 0.2 0.4 0.6 0.8 1.0 0.84 0.92 0.88 0.90 0.80 0.86 0.82 0.88 0.90 LGM FG Het ASA GTAN 

Group Sys Sub Rel GNN Methods F1-Score  

 

B. Computational Complexity 

Computational complexity varies significantly across methods. Standard GNN message passing 

has complexity O (|E| · d · K) where |E| is edge count, d is embedding dimension, and K is layer 

depth. Memory-augmented methods add O (M · d) for memory operations where M is memory 

size. 

Heterogeneous GNNs increase complexity by a factor of |R| (number of relation types) due to type-

specific transformations. For real-time deployment, ASA-GNN and standard Het-GAT show the 

best latency profiles (< 100ms for 10K node graphs), while memory-augmented and community 

detection methods require 200-500ms. 
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V. CHALLENGES AND LIMITATIONS 

 

A. Scalability and Real-Time Processing 

Most reviewed methods demonstrate effectiveness on graphs with millions of nodes, but real-

world financial networks contain billions of transactions. Mini-batch training and sampling 

strategies help but may miss long-range fraud patterns. Real-time fraud detection requires sub-

second inference, challenging for complex GNN architectures with deep layers and attention 

mechanisms [16]. 

 

B. Interpretability and Explainability 

Financial institutions require explainable fraud detection for regulatory compliance (Basel III, 

GDPR), customer communication, and fraud investigation. Deep GNNs operate as black boxes, 

making it difficult to explain why specific transactions were flagged [17]. Attention weights 

provide some interpretability but often fail to capture complete reasoning chains. Subgraph-based 

methods offer better interpretability by identifying specific patterns, but may sacrifice predictive 

performance. 

 

C. Adversarial Robustness 

Fraudsters actively adapt to detection systems, creating adversarial scenarios where attackers 

manipulate graph structures to evade detection. Camouflage attacks involve creating legitimate-

looking connections, while graph poisoning attacks inject false edges during training [18]. Most 

reviewed methods do not explicitly address adversarial robustness. ASA-GNN's adaptive sampling 

provides some robustness, but systematic evaluation of adversarial attacks on GNN fraud detectors 

is limited. 

 

D. Concept Drift and Model Adaptation 

Fraud patterns evolve continuously as fraudsters develop new tactics and exploit system 

vulnerabilities. Models trained on historical data experience concept drift, where the fraud 

distribution changes over time. While FinGuard-GNN and temporal methods address some 

temporal aspects, none provide comprehensive online learning frameworks. Continual learning 

approaches that update models with new fraud patterns without catastrophic forgetting of previous 

patterns are needed. 

 

E. Privacy and Federated Learning 

Financial data privacy regulations restrict data sharing across institutions, limiting the ability to 

build comprehensive fraud detection models. Federated learning enables collaborative model 

training without sharing raw data, but applying federated learning to GNNs introduces challenges 

due to graph partitioning across institutions [19]. Cross-institution fraud patterns are difficult to 

detect in federated settings. 

 



© Volume 2, Issue 2, Feb 2026 | JATIR 

JATIR 140059      JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 74 

VI. FUTURE RESEARCH DIRECTIONS 

 

A. Explainable GNN Architectures 

Future work should focus on inherently interpretable GNN designs that maintain high performance 

while providing transparent fraud detection reasoning. Promising directions include: (1) 

Prototype-based learning where fraud cases are explained by similarity to prototypical fraud 

patterns; (2) Rule-enhanced GNNs that combine neural learning with interpretable logical rules; 

(3) Causal GNNs that identify causal fraud factors rather than spurious correlations [20]. 

 

B. Few-Shot and Zero-Shot Fraud Detection 

Emerging fraud types have minimal labeled examples, requiring few-shot learning capabilities. 

Meta-learning approaches that learn fraud detection strategies transferable to new fraud types show 

promise [21]. Zero-shot detection using semantic descriptions of fraud schemes could enable 

proactive detection of novel fraud patterns before they cause significant damage. 

 

C. Multi-Modal Fraud Detection 

Financial fraud detection can benefit from integrating multiple data modalities beyond transaction 

graphs: text (merchant descriptions, customer communications), images (check images, ID 

documents), time series (account activity patterns), and behavioral biometrics (typing patterns, 

mouse movements). Multi-modal GNNs that fuse graph structure with other modalities through 

attention mechanisms could capture complementary fraud signals. 

 

D. Temporal GNNs with Long-Range Dependencies 

Current temporal GNN methods focus on local temporal patterns. Sophisticated fraud schemes 

like complex money laundering operations span months and involve long-range temporal 

dependencies. Integrating Transformer architectures with GNNs could capture both spatial graph 

structure and long-range temporal patterns [22]. 

 

E. Robust and Certified GNN Defenses 

Developing provably robust GNN architectures resilient to adversarial attacks is critical. 

Approaches include: (1) Adversarial training with diverse attack scenarios; (2) Randomized 

smoothing for certified robustness guarantees; (3) Robust aggregation functions less sensitive to 

manipulated neighbors [23]. Game-theoretic frameworks modeling the strategic interaction 

between fraud detectors and adversaries could inform robust system design. 

 

F. Federated and Privacy-Preserving GNNs 

Advanced federated GNN algorithms addressing graph partitioning challenges, communication 

efficiency, and cross-institution pattern detection are needed. Privacy-preserving techniques 

including secure aggregation protocols, differential privacy mechanisms, and homomorphic 
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encryption for secure graph operations should be developed [24]. Federated transfer learning could 

enable institutions to benefit from fraud patterns learned by others while maintaining data privacy. 

 

G. Integration with Traditional Systems 

Hybrid systems combining GNN approaches with rule-based systems, anomaly detection, and 

domain expertise offer robust fraud detection. GNNs could focus on complex relational patterns 

while rule-based systems handle known fraud typologies. Ensemble methods combining multiple 

GNN architectures with diverse inductive biases could improve robustness [25]. 

 

VII. CONCLUSION 

 

THIS comprehensive review examines the state-of-the-art in Graph Neural Network-based fraud 

detection, analyzing ten recent methods that demonstrate the power of graph-based learning for 

financial security. GNNs have emerged as a transformative technology, offering superior 

performance over traditional machine learning by explicitly modeling the relational and structural 

patterns inherent in financial fraud. 

Our taxonomy categorizes approaches into memory-augmented, dynamic risk propagation, 

heterogeneous, adaptive sampling, semi-supervised, community-aware, systemic risk prediction, 

and subgraph pattern-enhanced frameworks. Performance analysis reveals that modern GNN 

methods achieve F1-scores of 0.85-0.92 on benchmark datasets, significantly outperforming 

traditional approaches. 

Despite impressive progress, significant challenges remain. Scalability to billion-edge graphs, 

real-time inference requirements, model interpretability for regulatory compliance, adversarial 

robustness against adaptive fraudsters, concept drift handling, and privacy-preserving learning all 

require further research. Future research directions include explainable GNN architectures, few-

shot and zero-shot learning, multi-modal integration, temporal models with long-range 

dependencies, provably robust defenses, federated learning, and hybrid systems. 

The field of GNN-based fraud detection is rapidly evolving, driven by both academic innovation 

and practical necessity. Continued research addressing current limitations while maintaining focus 

on practical deployment will be essential for realizing the full potential of GNNs in safeguarding 

the financial system. 
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