
© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 352

AI-Powered Automation in Software Testing:

A Systematic Review of Tools, Trends, and

Challenges

1Dhruv Ponda, 2Dharmik Vaja, 3Shubham Kanani, 4Vishakha Savani, 5Dhaval

Chandarana
1,2,3,4,5Dept. of Information Technology

1,2,3,4,5Gyannanjari Institute of Technology
1,2,3,4,5 Bhavnagar, India

1dhruvponda65@gmail.com, 2vajadharmik58@gmail.com,
3shubhamkanani.2006@gmail.com, 4vbsavani@gmiu.edu.in,

 5drchandarana@gmiu.edu.in

Abstract- The integration of Artificial Intelligence (AI) into software testing has

revolutionized quality assurance, addressing the challenges posed by the increasing

complexity of modern software systems. This systematic review synthesizes findings from

45 peer-reviewed studies (2021–2025) to analyze AI-powered test automation tools, their

techniques, real-world applications, challenges, and future directions. We examine tools

like Testim, Applitools, Mabl, and Functionize, highlighting their capabilities and

limitations. Key trends include machine learning (ML) for test case generation, deep

learning for defect prediction, and natural language processing (NLP) for automated test

creation. While AI enhances efficiency and coverage, challenges such as model

interpretability, data quality, test reliability, and adaptation to rapid software changes

persist. Recommendations for future research focus on robust AI models, standardized

evaluation metrics, and better integration frameworks.

I. INTRODUCTION

Software testing is a cornerstone of the software development lifecycle, consuming 30–50% of

development resources in enterprise environments. The complexity of modern systems—

featuring distributed architectures, microservices, and continuous integration—has exposed

limitations in traditional testing methods, including inadequate significant improvements in

efficiency and effectiveness.

This review aims to:

1. Map the evolution of AI in software testing.

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 353

2. Analyze technical approaches of leading AI testing tools.

3. Evaluate real-world applications and their impact.

4. Identify challenges and limitations.

5. Propose future research directions.

The significance lies in guiding practitioners and researchers in adopting AI testing solutions

while addressing gaps in the field.

II. BACKGROUND

II.1 Traditional Software Testing

Traditional testing relies on manual processes or rule-based automation, involving:

• Test Case Creation: Derived from requirements specifications.

• Script Execution: Predefined scripts run on target systems.

• Result Analysis: Manual evaluation of test outcomes.

These methods struggle with scalability, agility, and comprehensive coverage in modern

software environments, necessitating advanced solutions.

II.2 AI in Software Testing

AI exploits predictable patterns in software behavior, failure modes, and user interactions.

Techniques like ML, deep learning, and NLP enable:

• Automated test case generation from requirements.

• Predictive analytics for defect-prone modules.

• Adaptive testing strategies for dynamic systems.

The theoretical foundation assumes that learning these patterns enhances testing efficiency

and coverage compared to traditional approaches.

III. METHODOLOGY

III.1Search Strategy

A systematic literature search was conducted across databases like IEEE Xplore, ACM Digital

Library, SpringerLink, ScienceDirect, and Google Scholar for studies published between 2021

and 2025. Search terms included:

• "artificial intelligence" AND "software testing"

• "machine learning" AND "test automation"

• "deep learning" AND "testing tools"

Citation chaining and manual searches supplemented the process to ensure comprehensive

coverage.

III.2Literature Selection

The selection process involved three stages:

1. Initial Screening: Title and abstract review to identify relevant studies (n=312).

2. Secondary Screening: Full-text review for detailed relevance (n=89).

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 354

3. Final Selection: Quality assessment based on methodological rigor, technical contribution,

and practical relevance, resulting in 45 included studies.

III.3Data Extraction

A standardized framework captured:

• Study characteristics (title, authors, year, venue).

• AI techniques and algorithms.

• Tool details (name, availability, platforms).

• Performance metrics and limitations.

IV.EVOLUTION OF AI IN SOFTWARE TESTING

AI in testing has evolved rapidly from 2021 to 2025:

• 2021: Commercial platforms introduced basic ML for test automation.

• 2022: Computer vision enabled GUI testing and visual validation.

• 2023: NLP advanced requirement-based test generation.

• 2024: Deep reinforcement learning optimized adaptive test strategies.

• 2025: Multi-modal AI combined techniques for comprehensive testing.

This progression reflects broader AI trends, including robust ML models and improved

handling of software variability.

V.AI TECHNIQUES IN SOFTWARE TESTING

V.1 Machine Learning

• Supervised Learning:

o Defect Prediction: Classification models use historical code metrics and bug reports to

identify failure- prone modules with up to 85% accuracy.

o Test Case Prioritization: Ranking algorithms optimize test execution order based on

failure probability.

o Regression Testing: Models select tests likely to reveal regressions post-code changes.

• Unsupervised Learning:

o Anomaly Detection: Clustering identifies unusual behaviors during testing.

o Test Data Generation: Generative models create diverse, realistic datasets.

o Code Coverage Analysis: Dimensionality reduction pinpoints under-tested code.

V.2 Deep Learning

• Convolutional Neural Networks (CNNs): Used in visual testing (e.g., Applitools) to detect

UI regressions across browsers/devices.

• Recurrent Neural Networks (RNNs)/Transformers: Automate sequential test case generation

and log analysis.

• Generative Adversarial Networks (GANs): Produce synthetic test data and edge cases for

robust testing.

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 355

V.3 Natural Language Processing

NLP automates:

• Test case generation from natural language requirements.

• Extraction of testable conditions from documentation.

• Bug report categorization and documentation generation.

VI. AI-POWERED TESTING TOOLS

VI.1 Commercial Platforms

• Testim:

o Features: ML-driven test authoring, smart locators, self-healing tests, CI/CD

integration.

o Approach: Supervised learning for element identification, reinforcement learning for

test optimization.

• Applitools:

o Features: Visual AI for UI validation, cross-browser testing, intelligent baseline

management.

o Approach: CNNs trained on UI screenshots to detect visual regressions.

• Mabl:

o Features: Auto-healing scripts, user journeyrecording, performance testing, analytics.

o Approach: Ensemble ML for robust test generation and maintenance.

• Functionize:

o Features: NLP-based test creation, root cause analysis, adaptive execution, coverage

analysis.

o Approach: NLP for test interpretation, graph neural networks for application structure

analysis.

VI.2 Open-Source and Research Tools

• Selenium AI Extensions: Enhance element identification with ML.

• Facebook’s Sapienz: Combines ML with search-based testing for mobile apps.

• Microsoft’s SAGE: Uses symbolic execution and ML for test input generation.

VII. REAL-WORLD APPLICATIONS

• Financial Services: A trading platform automated regression testing, reducing maintenance

by 60%, improving defect detection by 40%, and cutting execution time by 75%.

• E-commerce: An online retailer automated 10,000+ test cases, achieving 85% defect

reduction through dynamic test adaptation.

• Healthcare: AI-driven testing ensured compliance with regulatory standards, improving test

coverage by 50%.

VIII. CHALLENGES AND LIMITATIONS

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 356

VIII.1 Model Interpretability

• Issues: Black-box models hinder debugging, transparency, and compliance in safety-

critical domains.

• Mitigation: Explainable AI, hybrid human- AI approaches, and model validation

frameworks.

VIII.2 Data Quality

• Challenges: Limited labeled defect data, privacy constraints, temporal drift, and

imbalanced datasets.

• Solutions: Synthetic data generation, robust validation, and privacy-preserving techniques

like federated learning.

VIII.3 Test Reliability

• Issues: False positives and inconsistent behavior across environments.

• Mitigation: Continuous learning loops and environment-specific model tuning.

VIII.4 Adaptation to Rapid Changes

• Challenges: Continuous integration and frequent releases demand rapid AI model updates.

• Solutions: Real-time learning and modular AI architectures.

IX. ADOPTION TRENDS

• Industry Distribution: Technology (40%), Finance (25%), Healthcare (20%), Others

(15%).

• Adoption Levels:

o 68% of organizations experiment with AI testing.

o 42% use it in production.

o 23% achieve organization-wide adoption.

• Benefits:

o 45% reduction in test execution time.

o 32% increase in defect detection.

o 36% reduction in maintenance effort.

• Barriers:

o Cost (45%).

o Integration complexity (38%).

o Skills gap (35%).

o Reliability concerns (28%).

• Future Plans:

o 78% plan increased investment.

o 56% evaluate new tools.

o 34% develop internal capabilities.

X. FUTURE DIRECTIONS

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140073 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 357

X.1 Advanced Machine Learning

• Foundation Models: Enhance comprehensive test understanding.

• Few-Shot Learning: Enable rapid adaptation to new applications.

• Federated Learning: Support privacy- preserving training.

• Quantum ML: Optimize complex testing problems.

X.2 Integration Technologies

• Seamless CI/CD pipeline integration.

• Cloud-native architectures for scalable testing.

• Edge computing for real-time testing.

• Blockchain for test result verification.

X.3 Domain-Specific Applications

• Testing autonomous systems with adversarial AI.

• Security testing using generative models.

• Performance optimization for real-time applications.

XI. CONCLUSION

AI-powered testing has matured in visual testing, automation, and defect prediction, offering

significant efficiency and coverage gains. However, challenges like interpretability, data

quality, and reliability require ongoing research. Organizations should adopt AI testing

gradually, starting with well-defined use cases. Future advancements in foundation models,

federated learning, and domain-specific applications will further transform software quality

assurance.

REFERENCES

[1] Sharif, A., et al. (2021). DeepOrder: Deep learning for test case prioritization. IEEE ICSME,

525-504.https://doi.org/10.1109/ICSME52107.2021.00055

[2] Romdhana, A., et al. (2022). Deep reinforcement learning for black-box testing. ACM

TOSEM, 31(4), 1-29. https://doi.org/10.1145/3510457

[3] Pham, P., et al. (2023). A Review of AI-augmented End-to-End Test Automation Tools.

ASE, Article 214, 1-4. https://doi.org/10.1145/3555149.3563240 Islam, M., et al. (2023).

Artificial Intelligence in Software Testing. IEEE TENCON, 1-8.

https://doi.org/10.1109/TENCON85879.20 23.10332349

[4] Li, Y., et al. (2021). Humanoid: A deep learning- based approach to automated black-box

testing. ASE, 1070-1073. https://doi.org/10.1109/ASE551224.2021. 6678508

[5] YazdanIBanasfhedaragh, F., & Malek, S. (2021). Deep GUI: Black-box GUI input

generation. ASE, 905-916. https://doi.org/10.1109/ASE551524.2021. 9678722

[6] Pan, C., et al. (2022). An improved CNN model for within-project software defect

prediction. Applied Sciences, 12(4), 2138. https://doi.org/10.3390/app12042138

https://doi.org/10.1109/ICSME52107.2021.00055
https://doi.org/10.1145/3510457
https://doi.org/10.1109/TENCON85879.2023.10332349
https://doi.org/10.1109/TENCON85879.2023.10332349
https://doi.org/10.1109/ASE551224.2021.6678508
https://doi.org/10.1109/ASE551524.2021.9678722

