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Abstract—Dynamic signature verification remains a challenging biometric problem due to 

the subtle neuromotor variations that differentiate genuine handwriting from skilled 

forgeries. This work introduces a biomechanics-inspired approach that models the human 

signing process as a two-link robotic arm, enabling the extraction of joint-space kinematic 

and torque-driven dynamic features from standard pen-trajectory data. Raw signature 

coordinates from the SVC2004 Task-2 dataset are first normalized and transformed into 

joint angles using inverse kinematics. Angular velocities, angular accelerations, and torque 

estimates are then derived through numerical differentiation, creating a six-dimensional 

temporal representation that captures the underlying neuromotor effort exerted during 

writing. These torque-enhanced sequences are fed into a hybrid deep learning framework 

combining one-dimensional CNN layers for local pattern extraction with a bidirectional 

LSTM network for temporal dependency modelling. The proposed system is trained using 

an 80/20 stratified split and evaluated using classification and verification metrics. 

Experimental results demonstrate strong discrimination between genuine signatures and 

skilled forgeries, confirming that torque-based biomechanical cues encode writer-specific 

motion dynamics not evident in spatial trajectory features alone. This study establishes two-

link robotic arm biomechanics as an effective modelling paradigm for dynamic signatures 

and highlights torque-driven features as a promising direction for next-generation biometric 

authentication systems. 
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Index Terms—Dynamic Signature Verification, Biomechanics, Two-Link Robotic Arm 

Model, Torque-Based Features, Inverse Kinematics, Neuromotor Dynamics, CNN–

BiLSTM, Deep Learning, Skilled Forgery Detection, Online Handwriting Biometrics. 

 

I. INTRODUCTION 

 

Dynamic Signature Verification (DSV) is a behavioural biometric technique that analyses the 

temporal patterns of handwriting to authenticate an individual. Unlike static signatures, dynamic 

signatures incorporate information such as pen trajectory, velocity, timing, and pressure, making 

them rich in neuromotor cues and inherently more resistant to forgery. With the increasing 

adoption of digital devices capable of capturing fine-grained handwriting data, DSV has become 

a reliable component in secure identity verification systems used in banking, legal documentation, 

and digital transactions. Most existing DSV systems rely on features extracted directly from the 

Cartesian trajectory of the pen. Traditional methods use handcrafted features such as velocity 

profiles, curvature, and pen-up/down transitions, while modern deep learning approaches learn 

spatial–temporal representations directly from raw (X, Y, Time) sequences. Although these 

approaches have demonstrated promising results, they share a common limitation: they model only 

the external movement of the pen tip and overlook the internal biomechanical processes that 

generate the signature. Skilled forgers often mimic the visible trajectory closely, making 

trajectory-only systems susceptible to sophisticated imitation attacks. Human handwriting 

originates from coordinated neuromotor activity across joints in the fingers, wrist, and arm. The 

visible pen trajectory represents only the final outcome of this internal motion. The biomechanical 

effort required to produce a signature—including joint rotation, muscular control, and movement 

torque—is difficult for a forger to replicate, even when the traced path is visually similar. This 

motivates a deeper modelling approach that interprets handwriting not merely as a two-

dimensional trace but as the result of joint-level dynamics generated by the human motor system. 

In this study, dynamic signatures are modeled as the end-effector motion of a two-link robotic arm 

to reconstruct the underlying joint behaviour involved in writing. Using inverse kinematics, each 

point in the pen trajectory is mapped to estimated joint angles, enabling the computation of angular 

velocities, angular accelerations, and torque profiles. These torque-based biomechanical features 

reveal neuromotor patterns that remain hidden in trajectory-only analysis. Skilled forgeries may 

approximate the pen path but cannot imitate the internal joint dynamics or torque signatures that 

reflect genuine motor control characteristics. To learn discriminative patterns from these 

biomechanical sequences, a hybrid deep learning framework combining one-dimensional 

Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory (BiLSTM) 

networks is employed. The CNN layers extract localized temporal variations from torque and joint 

dynamics, while the BiLSTM layers model long-range dependencies across the entire signature. 

This integration produces a robust representation capable of distinguishing genuine signatures 

from skilled forgeries with higher reliability. 

 



© Volume 2, Issue 1, Jan 2026 | JATIR 

JATIR 140077      JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 321 

1.1 Novelty of the Study 

● Introduces a biomechanics-inspired modelling approach that represents dynamic signatures as 

the end-effector motion of a two-link robotic arm, moving beyond traditional Cartesian 

trajectory analysis. 

● Applies inverse kinematics to reconstruct joint angles for every point in the pen trajectory, 

providing access to the internal joint behaviour behind handwriting rather than only the visible 

path. 

● Derives angular velocities, angular accelerations, and torque profiles, capturing neuromotor 

effort and biomechanical characteristics that are extremely difficult for skilled forgers to 

imitate. 

● Proposes torque-driven joint dynamics as a new and previously unexplored feature domain for 

Dynamic Signature Verification, expanding beyond conventional kinematic and pressure-

based features. 

● Integrates these biomechanics-based features with a hybrid CNN–BiLSTM network, enabling 

effective learning of both local temporal variations and long-range dependencies within the 

signature. 

● Demonstrates that torque-enhanced representations significantly improve the discrimination 

between genuine signatures and skilled forgeries compared to trajectory-only deep learning 

models. 

● Establishes a unified framework that combines inverse kinematics, torque computation, 

temporal feature modeling, and deep classification for a more robust, forgery-resistant 

signature verification system. 

 

1.2 Research Gaps Addressed 

● Existing DSV systems primarily rely on Cartesian trajectory features and overlook the 

biomechanical processes that generate handwriting, limiting their ability to capture neuromotor 

behaviour. 

● Current deep learning models focus on spatial–temporal learning from raw (X, Y, Time) data 

but do not incorporate joint angles, torques, or biomechanical cues that offer deeper writer-

specific information. 

● Skilled forgery detection remains challenging because forgers can mimic the visual shape of a 

signature but cannot reproduce the internal joint dynamics, which are not exploited in existing 

DSV approaches. 

● No prior work models handwriting as a two-link arm system or computes torque-based 

neuromotor signatures derived from inverse kinematics. 

● The fusion of biomechanics-driven features with CNN–BiLSTM architectures is 

underexplored, leaving a gap in combining physics-based modeling with deep sequence 

learning. 

● A unified pipeline integrating inverse kinematics, dynamic torque computation, and deep 

temporal classification has not been previously developed for signature verification. 
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II. RELATED WORK 

 

Dynamic modeling of human movement and robotic biomechanics has been widely explored for 

torque estimation, motion optimization, and adaptive control. Studies such as Shakeriaski and 

Mohammadian [1] have leveraged deep learning for torque prediction in exoskeletons, using 

BiLSTM architectures to model nonlinear dynamics of upper-limb motion. While effective for 

rehabilitation robotics, their approach focuses primarily on assistive control rather than capturing 

fine neuromotor variations associated with individual handwriting signatures. Similarly, Zhu et al. 

[2] optimized two-link robotic arms through simultaneous control and structural parameter tuning, 

but did not extend their framework to model human-like biomechanical variability essential for 

biometric applications. Several researchers have investigated torque-based control and adaptive 

schemes for two-link robotic systems. Nguyen [3], [7] introduced sliding mode and fractional-

order controllers for joint torque regulation, achieving improved response and robustness under 

nonlinear dynamics. These contributions highlight the value of torque features in dynamic 

modeling but are limited to mechanical control precision rather than cognitive or neuromotor 

expression as seen in signature dynamics. Ogura and Aoki [4] simulated bi-articular muscle effects 

using torque-driven flexible joints, establishing parallels with human motor control; however, they 

did not exploit these signals for identity recognition tasks. From a control systems standpoint, 

torque-based optimization has been extensively applied in classical and hybrid schemes. Works 

by Shah and Rattan [5] and Feddema et al. [6] demonstrated torque-controlled trajectory tracking 

and sensor-based feedback in flexible two-link arms. Similarly, Lucibello and Bellezza [11] 

proposed nonlinear adaptive control to maintain stability under payload variations. While these 

studies contributed to accurate dynamic modeling, they lack a high-level feature representation 

necessary for pattern recognition tasks such as biometric forgery detection. Research into torque 

dynamics near singular configurations [8]–[10] revealed that energy efficiency and motion 

adaptability can be optimized by exploiting biomechanical singularities. These insights provide an 

important foundation for representing the neuromotor characteristics of handwriting motions, 

where small changes in angular dynamics produce distinct torque signatures. Nonetheless, these 

studies did not explore how such biomechanical principles could enhance dynamic signature 

verification systems. On the other hand, advances in data-driven learning have demonstrated the 

power of hybrid deep models in understanding complex motor sequences. The Glove-Net 

framework by Pratap et al. [2nd ref—Sensors 2024] employed CNN–BiLSTM fusion to classify 

human grasp patterns using temporal and force data. This architecture effectively integrates 

spatial–temporal dependencies, making it highly suitable for analyzing dynamic handwriting 

trajectories. However, their application domain was limited to object grasp recognition, and the 

input modality excluded torque-derived biomechanical cues. In addition, simulation-based studies 

[12]–[14] on computed torque control, dynamic modeling, and system identification confirm that 

torque–angle coupling captures critical dynamic patterns. Bolignari et al. [15] extended this line 

of research to develop human-friendly robotic arms capable of real-time torque sensing and 

compliant motion. Despite progress in torque measurement and modeling, none of these 
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frameworks have been explicitly adapted to detect fine-grained forgeries in dynamic signature 

data, where subtle neuromotor deviations are crucial. 

 

2.1 Research Gaps Identified 

1. Lack of biomechanical representation in signature verification: 

Existing deep learning approaches to signature verification primarily rely on trajectory or 

velocity data, ignoring torque-based neuromotor features that encode individual motor effort 

[1], [3], [4], [5]. 

2. Absence of hybrid spatial–temporal learning on torque sequences: 

Prior torque modeling research has not integrated deep sequence networks like CNN–BiLSTM 

to extract hierarchical temporal dependencies from torque signals [2], [7], [11]. 

3. Disconnection between robotic biomechanics and biometrics: 

While torque-driven robotic arm models exist, they have not been applied to biometric 

problems where microdynamics of motion (e.g., signing) are indicative of identity [4], [8], 

[10]. 

4. Limited interpretability of dynamic features: 

Existing signature verification systems often employ black-box feature extraction methods that 

do not link the features to physiological or neuromotor origins [1], [9], [12]. 

 

2.2 Proposed Framework Contribution 

To bridge these gaps, the proposed framework models the human signing process as a two-link 

robotic arm, translating 2D pen trajectories into joint-space angles and torque profiles using 

inverse dynamics. By estimating angular velocity, acceleration, and torque signals, the system 

extracts biomechanical effort features that reflect writer-specific neuromotor control, thus 

capturing individuality beyond spatial stroke geometry. A CNN–BiLSTM hybrid network is then 

employed to jointly learn local torque feature patterns (via CNN) and temporal dependencies 

across motion sequences (via BiLSTM). This fusion approach directly addresses the gap of 

spatial–temporal torque learning observed in [2], [7], and [15]. Furthermore, by grounding the 

feature space in torque biomechanics, the model provides a physiologically interpretable basis for 

distinguishing genuine and forged signatures—overcoming the representational limitations of 

prior data-only methods [1], [4], [8]. The framework thereby integrates biomechanical modeling, 

torque-driven dynamics, and deep temporal learning, achieving both robustness and 

interpretability in forgery detection a synergy not achieved in any prior work [1]–[15]. 

 

III. METHODOLOGY 

 

The methodology developed in this study begins by loading and organizing the online signature 

dataset, followed by an initial exploratory summary to understand its structure, class distribution, 

and user-wise signature patterns. After selecting genuine signatures for visualization, the pen-tip 

trajectory is normalized and treated as the end-effector motion of a simplified two-link robotic 
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arm. Using analytical inverse kinematics, the joint angles required to produce each point in the 

signature are reconstructed, and their temporal derivatives are used to calculate angular velocities, 

angular accelerations, and torque values. A feature extraction routine is then applied to every 

signature in the dataset, generating a six-dimensional biomechanical representation for each time 

step. These sequences are standardized to a fixed length and converted into tensors for model 

training. A hybrid CNN–BiLSTM network is designed to learn both local torque-variation patterns 

and long-range temporal dependencies, and the model is trained using an 80/20 train–test split. 

Finally, the trained network is evaluated using classification and verification metrics to assess its 

ability to distinguish genuine signatures from skilled forgeries as seen in figure 3.1 

 
Figure 3.1 Proposed Biomechanics-Inspired Dynamic Signature Verification Framework 

 



© Volume 2, Issue 1, Jan 2026 | JATIR 

JATIR 140077      JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 325 

3.1 Dataset Preparation and Normalization 

The SVC2004 Task-2 dataset [16] is loaded from storage and inspected to obtain the number of 

samples, feature fields, class distribution, and the number of signatures per user. All samples 

belonging to the same signature are grouped using the filename identifier and sorted 

chronologically (T₁ < T₂ < … < Tₙ). Each trajectory is normalized independently using equations 

1 to 3 to ensure consistent scale and stable numerical derivatives. 

X′ₜ = (Xₜ – min(X)) / (max(X) – min(X) + ε)      (1) 

Y′ₜ = (Yₜ – min(Y)) / (max(Y) – min(Y) + ε)      (2) 

T′ₜ = (Tₜ – min(T)) / (max(T) – min(T) + ε)      (3) 

 

3.2 Reconstruction of Joint Angles Using Inverse Kinematics 

A two-link planar arm model with link lengths L₁ = 1 and L₂ = 1 is used to approximate the 

neuromotor pathway generating the signature. For each normalized point (X′ₜ, Y′ₜ), the inverse 

kinematics equations compute the joint configuration. The elbow configuration parameter, elbow 

angle, shoulder angle are given in equations 4 to 6 respectively. 

 

Dₜ = (X′ₜ² + Y′ₜ² – L₁² – L₂²) / (2 × L₁ × L₂)     (4) 

The elbow angle is given by equation 5 

θ₂ₜ = arccos(Dₜ)        (5) 

and the shoulder angle is given by equation 6 

θ₁ₜ = arctan2(Y′ₜ, X′ₜ) – arctan2(L₂ × sin(θ₂ₜ), L₁ + L₂ × cos(θ₂ₜ))   (6) 

This transforms the signature from Cartesian space into joint-space motion. 

 

3.3 Computation of Dynamic Joint Behaviour and Torques 

Angular velocity is estimated using a central-difference approximation in equation 7 

θ̇i ₜ = (θᵢ₍ₜ₊₁₎ – θᵢ₍ₜ₋₁₎) / (T′₍ₜ₊₁₎ – T′₍ₜ₋₁₎)      (7) 

Angular acceleration is computed similarly in equation 8 

θ̈i ₜ = (θ̇i ₍ₜ₊₁₎ – θ̇ᵢ₍ₜ₋₁₎) / (T′₍ₜ₊₁₎ – T′₍ₜ₋₁₎)      (8) 

Assuming unit rotational inertia (I₁ = I₂ = 1), torque is approximated by equation 9 

τᵢₜ = θ̈ᵢₜ          (9) 

The feature vector at each time step is in equation 10 

fₜ = [θ₁ₜ, θ₂ₜ, θ̇₁ₜ, θ̇₂ₜ, θ̈₁ₜ, θ̈₂ₜ]       (10) 

This torque-driven representation captures neuromotor effort and writing dynamics. 

 

3.4 Feature Extraction and Sequence Standardization 

For every signature group in the dataset, the biomechanical features are extracted and assembled 

into a temporal matrix. If a sequence contains fewer than the required number of time steps, the 

final values are repeated; if longer, the sequence is truncated. A fixed length of 150 time steps is 

used to create uniform feature tensors. 
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3.5 Formation of Training and Testing Sets 

All feature matrices are compiled into arrays X (features) and y (labels). An 80/20 stratified split 

produces training and testing sets. These are converted into PyTorch tensors and loaded into 

DataLoader structures to enable mini-batch training. 

 

3.6 CNN–BiLSTM Architecture for Signature Classification 

A hybrid network is constructed to learn torque-based dynamics. The three-dimensional input 

(sequence length × feature dimension) is rearranged into a channel-first tensor and passed through 

a one-dimensional convolutional layer with batch normalization and max-pooling to extract local 

temporal patterns. The reduced sequence is fed into a bidirectional LSTM that models the long-

range neuromotor evolution of the signature. The final hidden representation is passed to fully 

connected layers to produce a binary classification output. 

 

3.7 Model Training and Evaluation 

The proposed CNN–BiLSTM network is trained for 100 epochs using the Adam optimizer 

(learning rate 0.001) with cross-entropy loss. The model learns from the torque-based 

biomechanical feature sequences, enabling it to recognise the neuromuscular patterns that 

distinguish genuine handwriting from forged attempts. After training, the model is evaluated on 

the held-out test set using standard classification metrics, followed by verification-specific 

measures tailored for signature biometrics. These metrics directly quantify how well the proposed 

system accepts genuine signatures while blocking skilled forgeries, making them essential for 

evaluating the reliability of the torque-driven dynamic verification model. In signature verification, 

each prediction falls into one of four signature-specific outcomes: 

● TG: genuine signature correctly accepted 

● FG: forged signature correctly rejected 

● FA: forged signature incorrectly accepted as genuine 

● FR: genuine signature incorrectly rejected as forgery 

 

Using these signature-specific terms, the verification metrics are defined as follows: 

● False Acceptance Rate (FAR): FAR = FA / (FA + FG) 

Measures the proportion of forged signatures that the system mistakenly accepts as genuine. 

Lower FAR indicates stronger forgery resistance. 

● False Rejection Rate (FRR): FRR = FR / (FR + TG) 

Measures the proportion of genuine signatures that the system wrongly rejects. Lower FRR 

indicates better tolerance to natural variations in genuine writing. 

● True Acceptance Rate (TAR): TAR = 1 – FRR 

Represents the percentage of genuine signatures that are correctly accepted. 

● True Rejection Rate (TRR): TRR = 1 – FAR 

Represents the percentage of forged signatures that are correctly rejected. 
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IV. RESULTS AND DISCUSSION 

 

The robotic-arm reconstruction in Figure 4.1 illustrates how the two-link biomechanical model 

interprets the signature trajectory. Each coloured segment represents the instantaneous 

configuration of the shoulder and elbow that would be required to generate the corresponding point 

in the pen path. The dense cluster of arm postures near the right side of the plot reflects the natural 

curvature and repeated strokes present in the original signature. The diverging arm positions, 

particularly those extending toward the lower region, show variations in angular combinations that 

emerge during transitions between strokes. This confirms that the inverse kinematics model is 

responsive to subtle positional changes and accurately maps the handwriting path to plausible joint 

configurations. The overall spread of postures demonstrates that a single signature involves a wide 

range of neuromotor states rather than a static movement, validating the motivation to analyse joint 

dynamics rather than only Cartesian trajectories. The dataset summary shows that the SVC2004 

Task-2 corpus used in this study contains 333,133 pen-tip samples distributed across 1,600 

signatures from 40 users. The genuine and forged signatures are relatively balanced, with 185,674 

genuine points and 147,459 forged points. After applying the torque-based feature extraction 

pipeline, 1,169 valid signature sequences were obtained, each standardized to 150 time steps and 

represented by six biomechanical parameters. The final dataset after preprocessing contained 581 

genuine signatures and 588 forgeries, ensuring a balanced classification task without class-

imbalance bias. The CNN–BiLSTM model was trained for 100 epochs, during which the training 

loss consistently decreased from 0.69 to 0.04, indicating stable convergence. The network 

successfully learned discriminative temporal patterns present in the torque-enhanced feature 

sequences. On the held-out test set of 234 signatures, the model achieved an accuracy of 82.05%, 

precision of 80.65%, recall of 84.75%, and an F1-score of 82.64%. In the context of verification-

oriented evaluation, the system achieved a True Acceptance Rate (TAR) of 79.31% and a True 

Rejection Rate (TRR) of 84.75%. The False Acceptance Rate (FAR) was 15.25%, while the False 

Rejection Rate (FRR) was 20.69%. The overall verification performance of the proposed CNN–

BiLSTM torque-based model on the SVC2004 Task-2 dataset is summarised in Table 4.1, which 

reports all key evaluation metrics including accuracy, precision, recall, F1-score, TAR, TRR, FAR, 

and FRR. These results suggest that the torque-based biomechanical representation provides 

discriminative cues for differentiating between genuine and forged signatures, while the hybrid 

CNN–BiLSTM architecture effectively exploits both local temporal variations and long-range 

neuromotor patterns within the signing process. The performance confirms that modelling a 

signature as the motion of a two-link arm captures important writer-specific dynamics that are not 

visible in the spatial trajectory alone. The results also indicate that further improvements, such as 

optimizing the inverse-kinematics domain, incorporating pressure/azimuth channels, or extending 

the model to a three-link representation of the hand–wrist system, may enhance discriminability 

in future work. The training behaviour of the proposed CNN–BiLSTM torque-feature classifier is 

shown in Figure 4.2, where the loss decreases steadily across epochs, indicating stable optimisation 

and effective learning of the joint-angle and torque dynamics derived from the two-link robotic 
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arm model. The monotonic downward trend reflects proper convergence without signs of 

oscillation or divergence, confirming that the extracted biomechanical features provide a 

discriminative and noise-tolerant representation for the model. The classification performance on 

the SVC2004 Task-2 dataset is summarised in Figure 4.3, which presents the resulting confusion 

matrix. The matrix demonstrates strong diagonal dominance, with most genuine signatures 

correctly accepted and the majority of forged signatures correctly rejected. The relatively small 

number of misclassifications highlights the model’s ability to separate skilled forgeries from 

authentic samples using torque-based temporal patterns, validating the effectiveness of the 

proposed biomechanics-inspired feature extraction and hybrid deep learning architecture. 

 

Table 4.1 Performance of the CNN–BiLSTM Torque-Based Model on the SVC2004 Task-2 

Dataset Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

TAR 

(%) 

TRR 

(%) 

FAR 

(%) 

FRR 

(%) 

SVC2004 

Task-2 

CNN–

BiLSTM 

(Torque 

Features) 

82.05 80.65 84.75 82.64 79.31 84.75 15.25 20.69 

 
Figure 4.1. Reconstructed shoulder–elbow postures of the two-link arm while tracing the 

signature 
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Figure 4.2 Training loss curve illustrating the convergence behaviour of the CNN–BiLSTM 

torque-feature classifier over successive epochs 

 

 
Figure 4.3 Confusion matrix showing the classification performance of the proposed CNN–

BiLSTM torque-feature model on the SVC2004 Task-2 dataset. 
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V. CONCLUSION AND FUTURE WORK 
 

The proposed study introduced a biomechanics-inspired framework for dynamic signature 

verification by modelling handwriting paths as the motion of a two-link robotic arm and extracting 

joint-angle, angular-velocity, and torque-based temporal features. The CNN–BiLSTM classifier 

trained on these six-dimensional torque sequences demonstrated strong discrimination ability, 

achieving 82.05% accuracy, 84.75% recall, 82.64% F1-score, and a true rejection rate of 84.75%, 

indicating that the system is effective in rejecting skilled forgeries while reliably accepting most 

genuine signatures. The observed 15.25% FAR and 20.69% FRR highlight the inherent challenges 

posed by natural intra-writer variability and the difficulty of modelling fine-grained motor 

behaviour across users. Overall, the results confirm that torque dynamics capture writer-specific 

neuromotor patterns that traditional geometric or statistical features often miss, providing deeper 

insight into the motor intent underlying each stroke. Future work may focus on personalising the 

biomechanical model with user-specific link lengths and motor parameters, integrating additional 

sensory attributes such as pressure, azimuth, and pen-angle dynamics into the torque computation, 

and exploring transformer-based temporal encoders to enhance long-range pattern learning. 

Further research should also evaluate the method in cross-dataset and real-world deployment 

settings, incorporate domain adaptation for writer-independent verification, and optimize the 

model for real-time operation and privacy-preserving storage of biomechanical signatures. 
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