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Abstract- Diffusion-based generative models have recently achieved remarkable success in
single image super-resolution (ISR), producing high-fidelity, perceptually convincing high-
resolution images from low-resolution inputs. These models, derived from Denoising
Diffusion Probabilistic Models (DDPMs) and related formulations, address limitations of
earlier CNN- and GAN-based approaches by generating rich textures and fine details aligned
with human visual preferences. In this paper, we review the practical applications of
diffusion models in ISR, focusing on their architectures, training strategies, and performance
relative to traditional methods. We discuss prominent models such as DDPM-based
upscalers, the SR3 approach for iterative refinement, and subsequent improvements.
Experimental results from recent studies are analyzed, comparing diffusion-driven ISR with
convolutional and GAN-based methods on standard benchmarks. Diffusion models
consistently excel in perceptual quality (often achieving lower Fréchet Inception Distance
and Learned Perceptual Similarity) and human evaluation fool rates, despite sometimes
lower PSNR/SSIM metrics than optimized CNN/GAN methods. We include example
comparisons, quantitative tables, and discuss the trade-offs in complexity and inference
speed. The paper is organized as a standard academic report with sections covering the
background, methodology, experimental evaluation, and a discussion on results and future
directions in diffusion-based ISR.

I.  INTRODUCTION

Image Super-Resolution (SR) is the task of reconstructing a high-resolution (HR) image from a
given low-resolution (LR) input. This longstanding challenge is inherently ill-posed, as a single
LR image can correspond to multiple plausible HR images differing in fine details or textures. SR
has wide-ranging applications from enhancing everyday photography to improving satellite
imagery and medical imaging. Traditional SR approaches included interpolation techniques (e.g.
bicubic upsampling) and later, machine learning methods such as sparse coding and neighbor
embedding. The advent of deep learning brought convolutional neural network (CNN) based SR
models like SRCNN (2014) and its successors, which significantly improved reconstruction

JATIR 140082 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 277


mailto:jeminkava915@gmail.com
mailto:dhwanil.raval15@gmail.com

© Volume 2, Issue 1, Jan 2026 | JATIR

fidelity by learning end-to-end mappings from LR to HR. These CNN-based methods optimized
pixel-wise losses (e.g. mean squared error) to maximize Peak Signal-to-Noise Ratio (PSNR), but
often produced overly smooth images lacking high-frequency details.

Generative models introduced new paradigms for SR by targeting perceptual quality. Generative
Adversarial Networks (GANSs), starting with SRGAN (Ledig et al. 2017), trained a generator to
produce sharper, more realistic textures using an adversarial loss and perceptual loss (feature
reconstruction). Enhanced GAN variants like ESRGAN further improved realism by architectural
changes (Residual-in-Residual blocks, etc.) and improved training techniques. GAN-based SR
methods demonstrated dramatic visual improvements, yielding much sharper outputs than pure
CNN regression; however, GANs can suffer from training instabilities, mode collapse, and
occasional unnatural artifacts. Careful regularization and tuning are required to keep GAN
generators stable and prevent hallucinating details.

Diffusion models have recently emerged as a powerful alternative for image generation and have
disrupted the SR field, closing the gap between algorithmic output and human perceptual
preferences. Diffusion Models (DMs) generate images by iteratively denoising from pure noise,
guided by a learned distribution. This approach has proven capable of producing extremely high-
quality, detailed images that often exceed the realism of previous methods. Importantly, diffusion
models avoid some pitfalls of GANs: their training objective (typically a simple denoising
regression) is more stable and mode-covering, meaning DMs capture a wide range of plausible
details rather than collapsing to a single solution. The introduction of diffusion-based SR
(beginning around 2021) marked a significant shift, challenging the long-standing dominance of
GANSs. For instance, Saharia et al. (2021) proposed SR3 (Super-Resolution via Repeated
Refinement), adapting a DDPM to conditional image generation for SR. SR3 demonstrated photo-
realistic 8x upsampling on faces and natural images, achieving human evaluation fool rates of
nearly 50% (i.e. human raters confuse the SR output for a real HR image about half the time),
whereas prior state-of-the-art GAN outputs fooled humans only ~34% of the time. Indeed, human
raters perceive diffusion-based SR results as more realistic than those produced by GANS.
Diffusion models have thus ushered in a new era for SR, enabling generation of high-fidelity
textures and details that align closely with human perceptual judgments.

Despite these successes, diffusion ISR methods are not without challenges. They demand high
computational cost for training and inference due to the iterative sampling procedure, and typically
employ large networks to achieve their quality gains. Early diffusion upsamplers could be orders
of magnitude slower than single-pass CNN or GAN models. Other noted issues include color
inconsistencies (e.g. slight color shifts in reconstructed images) and the inherent randomness in
the generative process which can lead to variability in outputs. This paper provides a
comprehensive review of diffusion models for image super-resolution, with emphasis on practical
architectural and training insights, and a comparative evaluation against traditional CNN-based
and GAN-based SR methods. In the following, we first survey related work in SR and diffusion
modeling (Section Related Work). We then outline the methodology of diffusion-based SR,
describing the typical architectures and training procedures (Section Methodology). In Section
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Experiments, we summarize experimental setups and benchmarks commonly used to evaluate SR
models. Section Results and Discussion presents quantitative and qualitative comparisons between
diffusion models and prior approaches, including tables of performance metrics (PSNR, SSIM,
FID, LPIPS) and visual examples. We discuss the implications of these results, current limitations,
and improvements such as hybrid diffusion-GAN techniques. Finally, Section Conclusion
concludes the paper and suggests future directions in diffusion-based super-resolution.

II.LRELATED WORK

Deep CNN-based Super-Resolution: The modern era of SR began with deep learning models.
SRCNN by Dong et al. (2014) was the first CNN for SR, demonstrating that a three-layer CNN
could learn an end-to-end mapping from LR to HR and outperform earlier interpolation or
dictionary-based methods. Subsequent networks like VDSR (very deep SR network), EDSR
(enhanced deep SR, which removed batch norm to push PSNR higher) and RCAN (residual
channel attention network) achieved progressively better reconstruction fidelity on benchmarks
such as Set5, Set14 and DIV2K. These models optimized pixel-wise losses (L1 or L2), focusing
on minimizing distortion metrics (PSNR/SSIM). While they achieved impressive numerical
accuracy, the outputs tended to be overly smooth and lacked fine textures, a consequence of the
objective which favors averaging to reduce pixel error. This over-smoothing prompted research
into perceptual quality optimization.

GAN-based Super-Resolution: GANs introduced by Goodfellow et al. revolutionized image
generation and were applied to SR to enhance perceptual realism. SRGAN first incorporated an
adversarial loss (a discriminator trained to distinguish real HR images from generated images)
along with a perceptual loss (measuring feature differences using a pre-trained network) to
encourage the generator to produce sharper and more detailed images instead of optimizing only
MSE. SRGAN’s outputs were much more photo-realistic than previous CNN outputs, albeit with
occasional artifacts. ESRGAN (Wang et al. 2018) improved upon SRGAN by introducing the
Residual-in-Residual Dense Block (RRDB) architecture and a relativistic GAN loss, further
improving detail generation and reducing artifacts. GAN-based SR methods dominated
perceptual-quality SR for several years, and numerous variants addressed issues like stability and
artifact reduction. However, GANSs require careful balancing of generator and discriminator during
training; otherwise one can observe phenomena like mode collapse or checkerboard artifacts.
Additionally, GAN-trained SR models often sacrifice some fidelity (PSNR) in exchange for
realism, as the generator may hallucinate details that do not exactly match the ground truth.
Diffusion Models for Super-Resolution: Diffusion models are a class of generative models that
define a forward process of gradually adding noise to an image and a learned reverse process to
remove noise and retrieve a clean image. Denoising Diffusion Probabilistic Models (DDPM)
introduced by Ho et al. (2020) and score-based generative models by Song ef al. (2020)
demonstrated that iterative denoising approaches could generate images of excellent quality
rivaling GANs. The adaptation of diffusion models to conditional image generation enabled their
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use in ISR. In 2021, Saharia et al. introduced SR3, which conditions a diffusion model on the LR
image to progressively super-resolve it. SR3’s approach of iterative refinement showed
outstanding results on face super-resolution (e.g. $16\times16 \to 128\times128$) and general
natural images, significantly outperforming GAN baselines in human evaluations. Around the
same time, Li ef al. (2022) proposed SRDiff, another diffusion-based SR model, claiming to be
one of the first diffusion models for general single-image SR. These works established diffusion
as a compelling approach for SR, combining the strengths of classical regression (fidelity to input)
with generative ability to synthesize realistic details. Subsequent research has produced numerous
variants and enhancements. Nichol & Dhariwal (2021) introduced improved sampling techniques
and classifier-guided diffusion, which can be adapted to further improve conditional generation
quality. More recently, researchers have explored latent diffusion (performing the diffusion
process in a lower-dimensional latent space to speed up inference) and cascaded diffusion (using
multiple diffusion models in series for very large upscaling factors or high-resolution outputs). For
example, StableSR leveraged a pre-trained text-to-image diffusion model (Stable Diffusion) as a
prior for SR, achieving rich texture generation by guiding the SR process with the latent knowledge
of a large diffusion model. Diffusion-based SR has also been applied in specialized domains such
as face restoration, where DMs help recover facial details from heavily degraded inputs, and in
remote sensing, where satellite images are upscaled with diffusion models to improve downstream
analysis[1]. A comprehensive survey by Moser ef al. (2024) catalogs these developments, noting
that diffusion models have become a dominant paradigm in SR research, consistently ranking
among state-of-the-art methods.

[II.METHODOLOGY

Diffusion Process for SR: At the core of diffusion-based SR is a conditional denoising process.
The model defines a forward diffusion (or degradation) process that adds Gaussian noise to a high-
resolution image through $T$ time steps, gradually destroying its structure. In SR, this forward
process is conceptually applied to the target HR distribution. The reverse diffusion process is a
Markov chain that starts from pure noise and iteratively denoises to recover an HR image,
conditioned on the given LR image. Formally, let $y$ be the desired HR image and $x$ be the
observed LR image. We define a forward noising sequence $y 0 = y$ (clean HR), $y T \sim
\mathcal {N}(0,1)$ (pure noise), and $y {t}$ is obtained by adding a small Gaussian noise to
$y {t-1}$ at each step. The reverse model approximates $p {\theta}(y {t-1}|y t, x)$ — the
distribution of the denoised image at step $t-1$ given the noisy image at step $t$ and the
conditioning LR. The neural network (often a U-Net) is trained to predict either the noise
$\epsilon$ added at each step or the clean image $y 0$ from a partially noised input. The training
objective typically minimizes a reweighted variational bound or a simple mean-squared error
between the network’s predicted noise and the true noise added, as derived by Ho et al. (2020). In
practice, this reduces to a straightforward $L_2$ loss between the model’s output and the known
noise, averaged over random timesteps and training samples. This training procedure is stable and
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does not require an adversarial discriminator; it essentially teaches the model to denoise an image
when a specific amount of noise has been applied, while utilizing the LR image as context.
Conditioning on the LR Image: A critical aspect of diffusion ISR models is how the low-resolution
image is provided as conditioning input. A common strategy, as used in SR3, is to concatenate the
LR image (usually upsampled to the HR size via simple interpolation) with the noisy image at each
diffusion step, channel-wise, and feed this as input to the U-Net model. The U-Net then has access
to the fixed LR guidance at every denoising step, ensuring the output remains consistent with the
large-scale structure of the input. Another approach is to provide the LR image as additional input
through an encoder branch. For example, Wang & Zhou (2024) augment the diffusion model with
an LR encoder network that extracts features from the LR image; these features are injected into
the denoising U-Net via cross-attention or concatenation at multiple layers. Such mechanisms aim
to address the challenge of inadequate conditional information — i.e., ensuring the model fully
utilizes the LR image to place generated details in correct correspondence with the input content.
In the Diffusion Architecture for Large Scale Super-resolution (DiffALS) model for remote
sensing, Li et al. fuse features from a pre-trained CNN on the LR image into the early layers of
the U-Net denoiser, specifically adding the LR feature maps into the first two residual blocks of
the contracting path. This helps the model align the generated high-frequency details with the
structures present in the LR input. Overall, modern diffusion SR architectures extensively use
conditioning mechanisms (concatenation, feature fusion, or cross-attention) to guide the denoising
process with the LR image.

Network Architecture: The backbone of most diffusion-based SR models is a U-Net architecture
inspired by the original DDPM work. The U-Net typically consists of a series of downsampling
convolutional blocks, a bottleneck, and corresponding upsampling blocks with skip connections
between matching levels. In SR applications, certain architectural modifications have been found
beneficial. The SR3 model’s architecture, for instance, adopts residual blocks from BigGAN in
place of standard ResNet blocks, and uses group normalization in each block. Skip connection
rescaling (by $1/\sqrt{2}$) is applied to stabilize training when layers are deep. SR3 also increases
the model capacity (more feature channels and more residual blocks per scale) compared to the
original DDPM, to effectively model the distribution of high-resolution images. Many diffusion
SR models use position embeddings (usually sinusoidal) to encode the timestep $t$ and
incorporate this via addition to feature maps or through FiLM-like modulation in each residual
block. This timestep embedding is crucial so that the network knows the current noise level and
can modulate its denoising strength accordingly. Modern designs may also integrate attention
mechanisms. For example, some approaches include self-attention layers at the lowest resolution
features to capture global image context (as done in Imagen and Latent Diffusion models). Others,
like the Enhanced Diffusion Model by Wang & Zhou (2024), use specialized blocks
(ENAFBIlocks) that combine efficient channel attention and gating mechanisms to improve
performance in noise prediction. These architectural innovations aim to improve the model’s
capacity to remove noise while preserving fidelity to the conditioning image.
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It's worth noting that diffusion SR models tend to be parameter-heavy. The SR3 model for
$64\t0256$ natural image SR had on the order of 155 million parameters, significantly larger than
typical CNN or GAN SR models, which often have tens of millions. This large capacity is one
factor in their success at generating detailed textures, but it also contributes to higher
computational load.

Training and Sampling Strategies: Training a diffusion SR model involves drawing random
timesteps $t \sim \text{Uniform}({1,\dots,T})$ each iteration, adding the corresponding amount
of noise to a ground-truth HR image $y$, and training the network to predict the noise (or denoised
image) given $y t$ and the LR condition $x$. DDPM-style training uses a simplified loss that is
equivalent to optimizing the variational lower-bound and has been effective in practice. Some
works introduce hybrid losses to further guide training. For instance, DiffALS adds an adversarial
loss term by training a separate discriminator that assesses whether the denoising trajectory is
realistic. In DiffALS, the discriminator (called a Noise Discriminator) looks at pairs of consecutive
noisy images $(y_{t},y_{t-1})$ and tries to distinguish real pairs (from the true diffusion of a real
image) vs fake pairs (from the model’s output). The generator (denoiser) then gets an additional
loss for fooling this discriminator, which encourages it to produce noise removal steps that result
in more realistic textures. Such adversarial augmentation can improve perceptual sharpness of
diffusion outputs, combining the strengths of GANs with diffusion’s robust framework. Another
training consideration is classifier-free guidance, a technique wherein the diffusion model is
trained sometimes with the condition (LR image) and sometimes without, and at inference one can
interpolate between the conditional and unconditional predictions to trade off adherence to the LR
input vs. output sharpness. Classifier-free guidance has been employed in some image-to-image
diffusion contexts; in SR specifically, most works aim for strict fidelity to the LR input, so guided
sampling is less common except in tasks like artistic upscaling or where some flexibility is desired.
During inference (sampling), one starts from Gaussian noise and iteratively applies the learned
denoiser $T$ times to obtain an output. The number of diffusion steps $T$ (often 50, 100, or even
1000) crucially impacts the runtime. Faster sampling schemes (e.g. DDIM deterministic sampling
or progressive distillation) can reduce the needed steps without severely compromising quality —
these have been explored in the literature to make diffusion more practical for ISR. Additionally,
techniques like adaptive step size or early stopping have been investigated, but generally diffusion
models remain slower than single-pass methods. We discuss this trade-off in the Results section.

IV.EXPERIMENTS

To evaluate diffusion-based SR models against traditional approaches, researchers have conducted
experiments on standard SR benchmarks and some specialized datasets. Common evaluation
datasets include DIV2K (a high-quality dataset of natural images with provided train/test splits for
4x SR), Urban100 (a set of urban scene images with rich textures/lines), and older sets like Set5,
Set14, and BSD100 for classical SR evaluations. For face super-resolution, tests are often done on
CelebA-HQ (high-quality celebrity face images) at tasks like $16"2 \to 128"2$ or $64/2 \to
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256"2%. Domain-specific datasets also appear in literature, e.g. remote sensing images (satellite
imagery upscaled for better resolution) and medical images (where resolution enhancement can
aid diagnostics).

Metrics: Experiments typically report distortion metrics such as Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM), which gauge how closely the super-resolved
image matches the ground truth pixel-wise. Higher PSNR/SSIM indicate better fidelity. However,
as discussed, these metrics often do not correlate well with human visual preference, especially for
high upscaling factors; a blurry but artifact-free image can score high PSNR, whereas a sharp,
detailed image with slight texture variations from the true image can score lower. Therefore,
perceptual quality metrics are critical. Many works report LPIPS (Learned Perceptual Image Patch
Similarity), an error measured in a deep feature space (lower LPIPS means the output is
perceptually closer to the reference). Another is the Fréchet Inception Distance (FID), which
compares the statistics of a set of generated images to real images — lower FID indicates the output
distribution is closer to the real distribution. Human evaluation studies (often in the form of A/B
preference tests or confusion tests) are also conducted to directly measure perceptual quality. For
example, a two-alternative forced choice (2AFC) test might ask human observers to choose which
image is real between a model’s output and a ground truth photo.

Baselines: In experiments, diffusion models are compared with both CNN-based SR methods
(optimized for PSNR) and GAN-based SR methods (optimized for perceptual quality). A typical
baseline for distortion-oriented SR is an EDSR or RRDB model trained with $L 1$ loss
(sometimes referred to as a "Regression" model or RCAN, etc.). For perceptual baselines,
SRGAN/ESRGAN or more recent variants like Real-ESRGAN (for real-world SR) are used.
Notably, some studies include classical interpolation (bicubic) as a low-end baseline to highlight
the improvements.

Training Setup: Diffusion SR models are exceedingly resource-intensive to train. For instance,
SR3’s training to super-resolve $64 \to 256$ images involved hundreds of GPU-hours and large
batch sizes. Most experiments in literature train diffusion models with $T\approx1000$ noise steps
and then often use a smaller number of inference steps with a sampler like DDIM. Some works
have tried to reduce training cost by using fewer diffusion steps or by transfer learning from pre-
trained generative models. For instance, StableSR fine-tuned a stable diffusion model (pre-trained
on generative tasks) for SR, rather than training from scratch. Diffusion models can also be
cascaded: train a model to do 2x or 4x SR, then apply it iteratively or in a chain to achieve 8x,
16x, etc., which is how SR3 handled 16x upscaling (by chaining a $16\to128$ and a $128\to512$
model).

In all experiments, visual comparison is key. Papers often include side-by-side image patches from
different methods to qualitatively assess sharpness, noise, and artifact levels. We include such a
comparison in the next section to illustrate the differences.
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V.RESULTS AND DISCUSSION

Visual comparison of super-resolution outputs for a face image (top) and a natural image
(leopard, bottom). Columns from left to right: the low-resolution input upscaled via Bicubic
interpolation; output of a CNN “regression” model optimized for PSNR (producing a smooth but
somewhat blurred result); output of a diffusion model (SR3) showing much finer detail; and the
ground truth high-resolution image for reference. The diffusion-based SR result provides realistic
textures (e.g. sharper eyes and fur) more closely resembling the ground truth, whereas the PSNR-
oriented model, while faithful in overall color/structure, lacks high-frequency detail.

The qualitative examples above highlight the key strength of diffusion-based SR: the ability to
synthesize realistic textures that traditional methods either blur out or cannot reconstruct. In the
face example, the bicubic and CNN outputs are smooth and lose details in the eyes and skin, while
the diffusion model restores crisp details (pores, eyelashes) that make the image look photo-
realistic. Similarly, for the leopard, the diffusion output has clearly defined fur patterns compared
to the smeared appearance from bicubic/CNN. These details contribute to much higher perceptual
fidelity. As aresult, images enhanced by diffusion models tend to fool human observers more often
into thinking they are real. A human study by Saharia et al. reported nearly 50% confusion rate on
8x face SR for their SR3 model, versus only ~15-34% for GAN or CNN-based models. In other
words, people were about as likely to mistake SR3’s output for a real HR image as they were to
identify the actual ground truth, a remarkable achievement for super-resolution.

Human evaluation of super-resolution models: the confusion rate (percentage of times raters
mistook the SR output for the real photo) for different methods. Top: On $16\timesl6 \to
128\times128% face SR (CelebA-HQ), SR3 achieved ~47% confusion, dramatically higher than
GAN-based FSRGAN (8.5%), an optimization-based method PULSE, or a regression CNN.
Bottom: On $64\times64 \to 256\times256% natural image SR, SR3 reached ~39% confusion vs
~13% for a regression model. These results demonstrate the superior perceptual realism of
diffusion-generated SR images.

Quantitatively, diffusion models often exhibit a trade-off between distortion metrics and
perceptual metrics when compared to other methods. Traditional CNN models (e.g. RRDB with
$L_1$ loss) typically achieve the highest PSNR/SSIM because they minimize pixel error, but their
outputs can be perceptually inferior. Diffusion models, by contrast, prioritize producing realistic
texture, which can introduce slight pixel discrepancies. For example, on the DIV2K benchmark
(4x SR), a regression-based model might achieve PSNR around 28-29 dB, whereas diffusion
models like SR3, SRDiff or others yield slightly lower PSNR (in the 2627 dB range). In one
experiment, an $L_1$-trained RRDB achieved 28.98 dB PSNR / 0.83 SSIM on DIV2K (with
relatively high LPIPS 0.27), while SR3 obtained 26.17 dB / 0.68 SSIM (and LPIPS 0.24).
However, the perceptual scores tell the other side of the story: SR3’s FID was 33.87, dramatically
better (lower) than RRDB’s 78.55. Similarly, LPIPS for SR3 (0.24) was lower than the CNN’s
(0.27), indicating closer perceptual similarity to ground truth. This reflects the well-known
observation that PSNR and SSIM do not fully reflect subjective image quality. Diffusion outputs
may diverge from the exact ground truth pixels (lowering PSNR) but appear more realistic to the
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eye (as evidenced by lower LPIPS/FID and human preference). Indeed, researchers caution against
relying solely on PSNR/SSIM for high-factor SR, since these metrics favor overly smooth
reconstructions over those with realistic texture.

It is informative to compare diffusion models with GAN-based SR in these metrics as well. GAN-
based methods like ESRGAN often strike a middle ground: they improve perceptual scores over
pure CNNs (with lower LPIPS than CNN, and better visual fidelity) but can still fall short of
diffusion in realism. For instance, one study on $16\times$ face SR found a GAN (FSRGAN) had
LPIPS ~0.135 and FID ~43.8, whereas diffusion (SR3) achieved LPIPS ~0.097 and FID ~35.1 —
significantly better perceptual quality. Notably, the GAN’s PSNR (23.01 dB) was slightly lower
than SR3’s (23.04 dB) in that case, indicating that both methods sacrifice some pixel fidelity for
perceptual gains, but diffusion was able to produce more convincing details without further
lowering PSNR. In general, diffusion models tend to deliver state-of-the-art perceptual
performance on SR tasks; for example, SR3 and SRDiff outputs in studies are often ranked best or
among the best by human evaluators[1]. Even in specialized domains like remote sensing,
diffusion SR models produced visually sharper and more useful results for downstream tasks (like
object segmentation) than GAN or CNN models, despite slightly lower PSNR[2]. Li ef al. report
that their diffusion model SRDiff outperformed a GAN (ESRGAN) and a CNN (NLSN) on
segmentation accuracy when using the super-resolved images, suggesting the extra textures
generated were genuinely beneficial and not just hallucinated nonsense[1]. This underscores that
diffusion SR models are not merely creating “fake detail,” but often adding plausible, context-
appropriate detail that can improve real-world utility.

One important disadvantage of diffusion-based SR is the computational burden. The iterative
denoising process is inherently slower than feed-forward upscaling. As a concrete example, in the
$4\times$ SR experiment on DIV2K, the diffusion model SR3 took an average of 318.8 seconds
per image (on a certain hardware setup), whereas a CNN like RRDB took only 1.6 seconds. Even
more efficient diffusion models from recent work report on the order of several seconds per image
for moderate resolution outputs. This large gap in inference speed and throughput has been a
barrier for deploying diffusion SR in real-time or high-volume scenarios. Moreover, diffusion
models are memory-hungry; their U-Net backbone operating at high resolution with many feature
channels can consume a lot of GPU memory (e.g. hundreds of MB for a single image). Researchers
are actively exploring solutions to this. Some approaches involve model distillation, compressing
the multi-step sampling into a smaller number of steps (e.g. 10 steps) by training the model to jump
larger intervals — this can dramatically accelerate inference at some cost of quality. Others use
latent-space diffusion, where the model operates on a lower-dimensional representation of the
image (such as a VAE latent code) and then uses a lightweight decoder to produce the final HR
output; this was popularized by Latent Diffusion Models and applied in tasks like Stable
Diffusion’s built-in upscaler. Such latent approaches can speed up computation by working on
smaller spatial sizes. Another line of improvement is architectural efficiency: Wang & Zhou’s
2024 model introduced an adaptive sampling strategy to process large images in patches (to fit in
memory) and carefully blend them. They also managed to reduce parameter count (their model
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~18M vs earlier diffusion models 35—155M) and still beat prior diffusion methods in quality. These
developments indicate that efficiency is being addressed, though a gap remains. Indeed, a survey
noted that computational cost and slow sampling are among the top challenges facing diffusion
models in SR.

It is also insightful to consider whether diffusion models truly represent a fundamentally better
approach, or if their strong results partly come from using larger models/training for longer. A
recent controlled study by Kuznedelev et al. (2024) titled “Does Diffusion Beat GAN in Image
Super Resolution?” explored this question. They found that when GAN and diffusion models are
given comparable model capacity and training data, their results on SR tasks can be very similar[3].
In other words, a well-tuned GAN can achieve on par perceptual quality with a diffusion model if
it’s scaled appropriately, suggesting that diffusion’s edge in some comparisons may have come
from heavier resource usage. Nevertheless, diffusion models have an advantage in their reliability
and mode coverage — they more easily incorporate uncertainty and diversity in outputs (multiple
samples can be generated for the same LR input, reflecting different plausible textures). GANs
typically produce one deterministic output and may miss some modes of the solution space unless
explicitly designed for diversity. Diffusion models also avoid typical GAN failure modes; one
rarely sees training collapse with diffusion — at worst, more training just yields gradually better
sample quality. This robustness is a practical benefit. Moreover, diffusion frameworks easily allow
guidance (e.g. using classifier guidance or textual prompts to steer generation), which opens up
new possibilities like text-conditioned SR or style-conditioned SR. While the baseline diffusion
vs. GAN gap may narrow under fair conditions, diffusion remains highly attractive due to its
flexibility and proven performance on extremely challenging cases (like 16x super-resolution or
generating realistic human faces from tiny thumbnails).

In summary, our analysis finds that diffusion-based super-resolution methods deliver state-of-the-
art perceptual quality, generating images that often appear indistinguishable from true high-
resolution photos. They resolve textures and details that CNN methods cannot, and even GANs
struggle to match the natural look of diffusion outputs. Quantitatively, they achieve lower FID and
LPIPS (better perceptual scores) and high human preference, though their PSNR/SSIM might be
slightly lower than ultra-fidelity methods. The choice between a diffusion model and a traditional
model may thus depend on the application: for tasks where photorealism is paramount (e.g.
enhancing images for human viewing, artistic applications, or downstream tasks tolerant to slight
pixel shifts), diffusion models are clearly superior. On the other hand, if one requires pixel-accurate
reconstruction (e.g. perhaps in some scientific imaging contexts or text super-resolution where
exact shapes must be recovered), a CNN approach might still be relevant or one might combine
diffusion with additional constraints. There are also hybrid approaches being explored, such as
using a first stage CNN for coarse fidelity and a second stage diffusion to add details.

VI.CONCLUSION
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Diffusion models have rapidly become a cornerstone of cutting-edge image super-resolution
research. By leveraging a stochastic refinement process, they effectively address the historic
challenge of the SR task’s ill-posed nature: instead of producing a single blurry estimate, diffusion
models can generate realistic high-frequency details consistent with the input. In this paper, we
discussed how models like DDPM and score-based diffusion have been adapted for ISR, from the
seminal SR3 model through to recent variants that integrate advanced conditioning and hybrid
losses. We reviewed architecture designs (U-Net backbones with BigGAN-style blocks, attention
mechanisms, and encoders for condition), and training insights that make diffusion SR feasible.
Through experimental comparisons, we highlighted that diffusion-based approaches offer
exceptional perceptual quality gains over traditional CNN or GAN methods — yielding images that
humans often prefer for their fidelity to real-world textures — at the cost of increased computation.
Diffusion SR models tend to slightly underperform classical models on PSNR/SSIM, emphasizing
that those metrics capture only one aspect of quality. Nonetheless, in contexts where visual realism
is the goal, diffusion models currently represent the state of the art.

Looking forward, there are several important directions to further advance diffusion-based ISR.
Improving efficiency is paramount: research into faster samplers, model compression, and
performing diffusion in compact domains (wavelet, latent spaces, etc.) is ongoing. Progress here
will determine how widely diffusion SR gets adopted in real-time applications. Another direction
is controllability — enabling user or algorithmic control over the output (for example, blending
between a high-fidelity but low-detail result and a lower-fidelity but highly detailed result, or
incorporating textual guidance to add plausible details like “increase the sharpness of text in
image”). Diffusion frameworks are well-suited for such control via guidance techniques.
Additionally, handling of real-world degradation (beyond simple bicubic down sampling) is a
practical extension: recent works combine diffusion models with unsupervised degradation
modeling to tackle real photographs where the downscale process is unknown. This remains
challenging, but diffusion’s ability to model uncertainty can be advantageous for capturing a
distribution of possible clean images. We also foresee more domain-specific diffusion SR: as noted
in the survey literature, applications in medical imaging, surveillance (e.g. enhancing faces or
license plates), and scientific imaging (astronomy, microscopy) are emerging. Each of these
domains can benefit from the high quality of diffusion-generated SR, possibly combined with
domain knowledge (e.g. MRI physical models or anatomical priors for medical).

In conclusion, diffusion models have opened a new frontier for image super-resolution, achieving
unprecedented levels of detail and realism. They complement and in many cases outperform GAN-
based approaches, marking a shift in how researchers approach the SR problem. With continued
research to mitigate their computational demands and enhance their control, diffusion-based ISR
is poised to transition from research labs to practical deployment in the coming years, enabling
anyone to enhance images in ways that were previously attainable only in imagination. The
convergence of high-quality output and improved efficiency will ultimately determine the extent
to which diffusion models revolutionize real-world super-resolution applications. The work
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surveyed and presented here provides a foundation and inspiration for further innovations at this
exciting intersection of generative modeling and image restoration.
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