© Volume 2, Issue 1, Jan 2026 | JATIR

Cost Optimization in Google Big Query: Best
Practices for Query Efficiency and Storage
Management

Tushar Gonhil
Assistant Professor
Information Technology Department,
Sarvajanik College of Engineering and Technology, Surat, India
tushar.gohil@scet.ac.in

Abstract—Google Big Query’s serverless architecture delivers high-speed analytics at scale,
yet its pay-as-you-go pricing requires diligent management to prevent escalating costs. This
paper investigates strategies to optimize query execution and storage, focusing on efficient
design principles like selective column retrieval and early filtering. By implementing
advanced data organization techniques such as partitioning and clustering, organizations
can significantly minimize data processed.

Index Terms—Google BigQuery, Cost Optimization, Query Efficiency, Storage
Management, Cloud Computing, Data Warehousing, Big Data, Partitioning and Clustering,
Cloud Cost Management, Data Analytics

I. INTRODUCTION

As organizations increasingly rely on Google Big Query for petabyte-scale analytics, managing its
performance-linked costs becomes a critical operational challenge [1], [3]. This paper provides a
comprehensive framework for optimizing BigQuery expenses through a dual focus on query
efficiency and storage management. By implementing technical best practices—such as table
partitioning, clustering, selective schema design, and approximate aggregation—organizations can
significantly reduce data scan volumes and computational overhead. Furthermore, we examine the
strategic use of Big Query’s tiered storage, automated lifecycle data policies, and caching
mechanisms to ensure cost-proportionality. Beyond technical execution, the study emphasizes the
necessity of proactive governance, utilizing real-time monitoring tools and cost-analysis
dashboards to identify inefficiencies [3], [8]. By integrating these optimization strategies, data

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 112

mailto:tushar.gohil@scet.ac.in

© Volume 2, Issue 1, Jan 2026 | JATIR

professionals and decision-makers can leverage Big Query’s high-speed analytical power while
maintaining sustainable, cost-effective data architecture in a cloud-centric business environment.

Il. BASELINE DATA STRUCTURE

To demonstrate optimization, this study utilizes the GA Source Table, derived from Google
Analytics 4 (GA4) public sample dataset (bg-public-data.ga4_obfuscated_sample_ecommerce.
events_*) [1], [4]. This dataset contains approximately 3.4 GB of obfuscated e-commerce event
data, including timestamps, event names, and user IDs. The table was initially created in an
unoptimized state—Ilacking partitioning or clustering—using a standard CREATE TABLE AS
SELECT * statement. In this configuration, any query (even those filtering for specific dates or
events) triggers a full table scan. This baseline represents a common but inefficient data structure,
serving as a clear benchmark to measure the cost-saving impact of the partitioning and clustering
techniques discussed in subsequent sections.

1. UNDERSTANDING QUERY COSTS IN BIGQUERY

Big Query’s cost-effectiveness depends on understanding its pay-as-you-go pricing model, where
expenses are primarily driven by the volume of data processed during query execution. Costs are
determined by the total bytes scanned. Because BigQuery utilizes columnar storage, it only bills for
the specific columns accessed by a query. Typically, pricing is calculated per terabyte (TB)
processed [1], [3] —for instance, a query scanning 1 TB at a $5/TB rate results in a $5 charge.

IV. COMMON DRIVERS OF HIGH EXPENSES

Inefficient query practices lead to excessive data processing and avoidable costs. Based on the

baseline GASourceTable (3.34 GB), common pitfalls include [4],[6]:

o Full Table Scans: Queries that scan the entire table instead of utilizing partitions. For example,
filtering by a specific date on an unpartitioned table still results in the full 3.34 GB billed.

e Overuse of SELECT *: Retrieving every column when only a subset is needed. Executing
SELECT * to find a specific event name forces a scan of all 3.34 GB.

o Unoptimized JOINs: Operations that process large datasets unnecessarily. An unoptimized
JOIN on the baseline table can process the entire 3.34 GB volume.

e Lack of Filtering: Queries that fail to use effective conditions to limit the data scan.

V. PARTITIONING IN BIGQUERY

BigQuery supports various partitioning methods tailored to specific data structures [1],[4]:

e Time-Based Partitioning: Ideal for time-series data like logs or events, this method divides
tables by DATE, TIMESTAMP, or DATETIME columns.

o DATE Partitioning: Tables are partitioned by a specific date column (e.g., event_date).

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 113

© Volume 2, Issue 1, Jan 2026 | JATIR

o TIMESTAMP/DATETIME Partitioning: Tables are segmented by timestamp or datetime
values.

« Integer-Range Partitioning: This divides a table based on a numeric column, such as user_id or
order_id, and is useful for datasets frequently filtered by numeric ranges.

stackoverflow.questions_2018_partitioned

Creation_date ‘ Title
stackoverflow.questions_2018 .
2018-03-01 How do 1?? Android
7 20180301
- e ??
20160201 |iHowdo it Androd 2018-03-01 What does? Android
-03- ? i
2018-03-01 When Should? Linux 2018-03-01 How does! saL
2018-03-02 This is great! Linux
Creation_date ‘ Title Tags
2018-03-03 Can this? C++
2018-03-02 This is great! Linux
2018-03-02 Help!! Android
2018-03-02 Help!! Android
2018-03-01 What does? Android
" Partition 20180302 2018-03-02 When does? Android
2018-03-02 When does? Android
2018-03-02 Can you help? Linux
2018-03-02 Canyou help? Linux
2018-03-02 What now? Android
2018-03-02 What now? Android
Creation_date Title Tags
2018-03-03 Just learned! SQL
2018-03-03 Can this? C+
2018-03-01 How does! SQL 20180303
2018-03-03 Just learned! SQL

FIGURE 1 PARTITIONING BEST PRACTICES

To maximize the benefits of partitioning, organizations should adhere to the following guidelines:
e Select the Right Column:
Choose a column frequently used in query filters, such as event date for time-series data.

e Avoid Over-Partitioning:
Aim for partitions that are at least 1 GB in size to maintain optimal performance.

e Combine with Clustering:
Use partitioning alongside clustering on additional columns for even greater efficiency.

e Use Partition Expiration:
Automatically delete old partitions to reduce long-term storage costs for temporary or log data

[1].[8].

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 114

© Volume 2, Issue 1, Jan 2026 | JATIR

VI. CLUSTERING IN BIGQUERY

Clustering optimizes BigQuery efficiency by strategically organizing table data to group related
rows based on specific columns, known as clustering keys. This organization allows BigQuery to
perform data skipping, bypassing irrelevant data blocks during query execution [4],[5].

Clustered Tables
Table 1 Table 2 Table 3
Not clustered Clustered by country Clustered by country and status
Order_Date Country Status Order_Date Country Status Order_Date Country Status
2022-08-02 us Shipped 2022-08-04 JP Shipped 2022-08-05 JP Canceled
2022-08-04 JP Shipped 2022-08-04 JP Processing 2022-08-04 JP Processing
2022-08-05 UK Canceled 2022-08-05 JP Canceled 2022-08-06 JP Processing
2022-08-06 KE Shipped 2022-08-06 JP Processing 2022-08-04 JP Shipped
2022-08-02 KE Canceled 2022-08-06 KE Shipped 2022-08-02 KE Canceled
2022-08-05 us Processing 2022-08-02 KE Canceled 2022-08-06 KE Shipped
2022-08-04 JP Processing 2022-08-04 KE Shipped 2022-08-04 KE Shipped
2022-08-04 KE Shipped 2022-08-02 KE Shipped 2022-08-02 KE Shipped
2022-08-06 UK Canceled 2022-08-05 UK Canceled 2022-08-05 UK Canceled
2022-08-02 UK Processing 2022-08-06 UK Canceled 2022-08-06 UK Canceled
2022-08-05 JP Canceled 2022-08-02 UK Processing 2022-08-02 UK Processing
2022-08-06 UK Processing 2022-08-06 UK Processing 2022-08-06 UK Processing
2022-03-05 us Shipped 2022:08-02 us Shipped 2022-08-05 us Processing
2022-08-06 JP Processing 2022-08-05 us Processing 2022-08-02 us Shipped
2022-08-02 KE Shipped 2022-08-05 us Shipped 2022-08-05 us Shipped
2022-08-04 us Shipped 2022-08-04 us Shipped 2022-08-04 us Shipped
FIGURE 2

Table clustering sorts data within a table or partition according to the specified keys. When a query
filters on these keys, BigQuery narrows the search to specific blocks, leading to:

o Cost Savings: Expenses are lowered by processing fewer bytes.

o Faster Execution: Performance is accelerated through reduced data scans.

Best Practices in Clustering
o Prioritize Frequent Filters:
Use columns often found in WHERE, GROUP BY, or JOIN clauses, such as user id.

o Limit Key Count:
While BigQuery supports up to four keys, 1-2 is typically sufficient; over-clustering can dilute

efficiency.

e Pairing for Impact:
Maximum efficiency is achieved by combining partitioning with clustering.

e Target Large Tables:

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 115

© Volume 2, Issue 1, Jan 2026 | JATIR

Clustering is most effective on sizable datasets where data skipping results in significant scan
reductions [5], [7].

VII. CONCLUSION

Cost optimization in Google BigQuery is essential for organizations leveraging cloud-based
analytics at scale. By balancing high-speed performance with budget-conscious operations,
businesses can maintain a sustainable data ecosystem. This study has demonstrated that a
multifaceted approach—Dblending technical efficiency with strategic oversight—is necessary to
prevent spiraling expenses.

ACKNOWLEDGMENT

| express my gratitude to the Google Cloud Platform for providing robust infrastructure and tools
that facilitated the efficient processing and analysis of large datasets for this research. Special thanks
are also extended to Data Talks Club’s Data Engineering Zoom camp. Their comprehensive
curriculum, hands-on projects, and vibrant community support were instrumental in sharpening the
data engineering principles and methodologies employed throughout this study.

REFERENCES

[1] BigQuery Documentation, “Introduction to partitioned tables,” Google Cloud, 2025.

[2] “Adaptive performance and cost optimization strategies in cloud data warehousing: A
comprehensive theoretical and applied synthesis,” Int. J. Data Sci. Mach. Learn., vol. 5, no. 2,
pp. 324-333, 2025.

[3] OWOX BI, “BigQuery pricing 2025: Forecast and manage costs,” OWOX Blog, Aug. 5, 2024.

[4] BigQuery Team, “Optimizing BigQuery for cost and performance,” Google Cloud
Whitepaper, 2023.

[5] R. Adhikari and C. Kambhampati, “Cloud data warehousing: Architecture, techniques, and
challenges,” J. Cloud Comput., vol. 12, no. 1, pp. 4568, 2023.

[6] P. Kodakandla, “Refactoring petabyte-scale data warehouses for performance and cloud
optimization,” Int. Res. J. Modernization Eng. Technol. Sci., vol. 5, no. 3, 2023.

[7] L. Garcia and M. Soto, “Storage optimization and compression modelling in cloud analytics
platforms,” Int. J. Big Data Syst., vol. 7, no. 1, pp. 55-70, 2023.

[8] Google Cloud, “An insider's guide to BigQuery cost optimization,” Google Cloud
Whitepapers, 2024.

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 116

