
© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 112

Cost Optimization in Google Big Query: Best

Practices for Query Efficiency and Storage

Management

Tushar Gohil

Assistant Professor

Information Technology Department,

Sarvajanik College of Engineering and Technology, Surat, India

tushar.gohil@scet.ac.in

Abstract—Google Big Query’s serverless architecture delivers high-speed analytics at scale,

yet its pay-as-you-go pricing requires diligent management to prevent escalating costs. This

paper investigates strategies to optimize query execution and storage, focusing on efficient

design principles like selective column retrieval and early filtering. By implementing

advanced data organization techniques such as partitioning and clustering, organizations

can significantly minimize data processed.

Index Terms—Google BigQuery, Cost Optimization, Query Efficiency, Storage

Management, Cloud Computing, Data Warehousing, Big Data, Partitioning and Clustering,

Cloud Cost Management, Data Analytics

I. INTRODUCTION

As organizations increasingly rely on Google Big Query for petabyte-scale analytics, managing its

performance-linked costs becomes a critical operational challenge [1], [3]. This paper provides a

comprehensive framework for optimizing BigQuery expenses through a dual focus on query

efficiency and storage management. By implementing technical best practices—such as table

partitioning, clustering, selective schema design, and approximate aggregation—organizations can

significantly reduce data scan volumes and computational overhead. Furthermore, we examine the

strategic use of Big Query’s tiered storage, automated lifecycle data policies, and caching

mechanisms to ensure cost-proportionality. Beyond technical execution, the study emphasizes the

necessity of proactive governance, utilizing real-time monitoring tools and cost-analysis

dashboards to identify inefficiencies [3], [8]. By integrating these optimization strategies, data

mailto:tushar.gohil@scet.ac.in

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 113

professionals and decision-makers can leverage Big Query’s high-speed analytical power while

maintaining sustainable, cost-effective data architecture in a cloud-centric business environment.

II. BASELINE DATA STRUCTURE

To demonstrate optimization, this study utilizes the GA Source Table, derived from Google

Analytics 4 (GA4) public sample dataset (bq-public-data.ga4_obfuscated_sample_ecommerce.

events_*) [1], [4]. This dataset contains approximately 3.4 GB of obfuscated e-commerce event

data, including timestamps, event names, and user IDs. The table was initially created in an

unoptimized state—lacking partitioning or clustering—using a standard CREATE TABLE AS

SELECT * statement. In this configuration, any query (even those filtering for specific dates or

events) triggers a full table scan. This baseline represents a common but inefficient data structure,

serving as a clear benchmark to measure the cost-saving impact of the partitioning and clustering

techniques discussed in subsequent sections.

III. UNDERSTANDING QUERY COSTS IN BIGQUERY

Big Query’s cost-effectiveness depends on understanding its pay-as-you-go pricing model, where

expenses are primarily driven by the volume of data processed during query execution. Costs are

determined by the total bytes scanned. Because BigQuery utilizes columnar storage, it only bills for

the specific columns accessed by a query. Typically, pricing is calculated per terabyte (TB)

processed [1], [3] —for instance, a query scanning 1 TB at a $5/TB rate results in a $5 charge.

IV. COMMON DRIVERS OF HIGH EXPENSES

Inefficient query practices lead to excessive data processing and avoidable costs. Based on the

baseline GASourceTable (3.34 GB), common pitfalls include [4],[6]:

• Full Table Scans: Queries that scan the entire table instead of utilizing partitions. For example,

filtering by a specific date on an unpartitioned table still results in the full 3.34 GB billed.

• Overuse of SELECT *: Retrieving every column when only a subset is needed. Executing

SELECT * to find a specific event name forces a scan of all 3.34 GB.

• Unoptimized JOINs: Operations that process large datasets unnecessarily. An unoptimized

JOIN on the baseline table can process the entire 3.34 GB volume.

• Lack of Filtering: Queries that fail to use effective conditions to limit the data scan.

V. PARTITIONING IN BIGQUERY

BigQuery supports various partitioning methods tailored to specific data structures [1],[4]:

• Time-Based Partitioning: Ideal for time-series data like logs or events, this method divides

tables by DATE, TIMESTAMP, or DATETIME columns.

o DATE Partitioning: Tables are partitioned by a specific date column (e.g., event_date).

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 114

o TIMESTAMP/DATETIME Partitioning: Tables are segmented by timestamp or datetime

values.

• Integer-Range Partitioning: This divides a table based on a numeric column, such as user_id or

order_id, and is useful for datasets frequently filtered by numeric ranges.

FIGURE 1 PARTITIONING BEST PRACTICES

To maximize the benefits of partitioning, organizations should adhere to the following guidelines:

• Select the Right Column:

Choose a column frequently used in query filters, such as event date for time-series data.

• Avoid Over-Partitioning:

Aim for partitions that are at least 1 GB in size to maintain optimal performance.

• Combine with Clustering:

Use partitioning alongside clustering on additional columns for even greater efficiency.

• Use Partition Expiration:

Automatically delete old partitions to reduce long-term storage costs for temporary or log data

[1],[8].

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 115

VI. CLUSTERING IN BIGQUERY

Clustering optimizes BigQuery efficiency by strategically organizing table data to group related

rows based on specific columns, known as clustering keys. This organization allows BigQuery to

perform data skipping, bypassing irrelevant data blocks during query execution [4],[5].

FIGURE 2

Table clustering sorts data within a table or partition according to the specified keys. When a query

filters on these keys, BigQuery narrows the search to specific blocks, leading to:

• Cost Savings: Expenses are lowered by processing fewer bytes.

• Faster Execution: Performance is accelerated through reduced data scans.

Best Practices in Clustering

• Prioritize Frequent Filters:

Use columns often found in WHERE, GROUP BY, or JOIN clauses, such as user id.

• Limit Key Count:

While BigQuery supports up to four keys, 1–2 is typically sufficient; over-clustering can dilute

efficiency.

• Pairing for Impact:

Maximum efficiency is achieved by combining partitioning with clustering.

• Target Large Tables:

© Volume 2, Issue 1, Jan 2026 | JATIR

JATIR 140100 JOURNAL OF ACADEMIC TRENDS & INNOVATIVE RESEARCH (JATIR) 116

Clustering is most effective on sizable datasets where data skipping results in significant scan

reductions [5], [7].

VII. CONCLUSION

Cost optimization in Google BigQuery is essential for organizations leveraging cloud-based

analytics at scale. By balancing high-speed performance with budget-conscious operations,

businesses can maintain a sustainable data ecosystem. This study has demonstrated that a

multifaceted approach—blending technical efficiency with strategic oversight—is necessary to

prevent spiraling expenses.

ACKNOWLEDGMENT

I express my gratitude to the Google Cloud Platform for providing robust infrastructure and tools

that facilitated the efficient processing and analysis of large datasets for this research. Special thanks

are also extended to Data Talks Club’s Data Engineering Zoom camp. Their comprehensive

curriculum, hands-on projects, and vibrant community support were instrumental in sharpening the

data engineering principles and methodologies employed throughout this study.

REFERENCES

[1] BigQuery Documentation, “Introduction to partitioned tables,” Google Cloud, 2025.

[2] “Adaptive performance and cost optimization strategies in cloud data warehousing: A

comprehensive theoretical and applied synthesis,” Int. J. Data Sci. Mach. Learn., vol. 5, no. 2,

pp. 324–333, 2025.

[3] OWOX BI, “BigQuery pricing 2025: Forecast and manage costs,” OWOX Blog, Aug. 5, 2024.

[4] BigQuery Team, “Optimizing BigQuery for cost and performance,” Google Cloud

Whitepaper, 2023.

[5] R. Adhikari and C. Kambhampati, “Cloud data warehousing: Architecture, techniques, and

challenges,” J. Cloud Comput., vol. 12, no. 1, pp. 45–68, 2023.

[6] P. Kodakandla, “Refactoring petabyte-scale data warehouses for performance and cloud

optimization,” Int. Res. J. Modernization Eng. Technol. Sci., vol. 5, no. 3, 2023.

[7] L. Garcia and M. Soto, “Storage optimization and compression modelling in cloud analytics

platforms,” Int. J. Big Data Syst., vol. 7, no. 1, pp. 55–70, 2023.

[8] Google Cloud, “An insider's guide to BigQuery cost optimization,” Google Cloud

Whitepapers, 2024.

