

Synthetic AI: Architecture, Applications, And Challenges

¹Prof. Sunil H. Chavda, ²Prof. Dhaval R. Chandarana

¹*shchavda@gmiu.edu.in*, ²*drchandarana@gmiu.edu.in*.

Abstract-Synthetic Artificial Intelligence (Synthetic AI) refers to the quest for machine intelligence that is not merely an imitation of human thinking, but a genuine, autonomous form of intelligence. This paper provides a comprehensive overview of Synthetic AI in the style of an academic survey. We introduce the concept of Synthetic AI and distinguish it from traditional artificial intelligence paradigms. A review of background literature is presented, including historical context and philosophical debates on whether machine intelligence can be “real” or is inherently a simulation. We then outline the system architecture of Synthetic AI, describing key components such as perception, memory, learning, reasoning, and action (with an illustrative diagram). Representative cognitive architectures from literature are discussed to exemplify how Synthetic AI systems may be constructed. Next, we survey potential applications of Synthetic AI—from healthcare and finance to autonomous systems and creative AI—and highlight current examples and use cases. We also examine the challenges that must be overcome, including technical hurdles, ethical considerations, and alignment with human values, and we discuss future research directions. Finally, we conclude by summarizing the transformative potential of Synthetic AI and the road ahead for realizing true machine intelligence.

I. INTRODUCTION

Artificial Intelligence (AI) traditionally refers to machines performing tasks that mimic human cognitive abilities such as learning and problem-solving. Synthetic AI, also known as *Synthetic Intelligence*, is a term emphasizing that machine intelligence need not be a mere artificial imitation of human intelligence, but can be a genuine, human-made form of intelligence [1]. In other words, the goal of Synthetic AI is to engineer true cognitive systems that operate autonomously with human-like (or even novel, non-human) intelligence, rather than simply copying or emulating human thought patterns. This concept dates back to the 1980s when John Haugeland and others proposed that a machine’s intelligence could be “synthetic” in the sense that a synthetic diamond is still a real diamond, as opposed to a simulated one [1]. The terminology highlights that an intelligent machine, if designed correctly, would *really* possess understanding and agency, not just appear intelligent from the outside.

Unlike conventional AI which often learns from human data and imitates observed patterns, Synthetic AI aspires to think independently and creatively. For instance, rather than regurgitating patterns from training data, a Synthetic AI system would generate *innovative, fresh ideas* and adapt its reasoning to context on its own, exhibiting goal-setting behavior and original problem-solving strategies [2]. Researchers have described Synthetic AI as a potential *successor* to current AI – an approach not bound by the limitations of human cognitive bias or pre-defined human knowledge [3]. The core idea is to create a new form of intelligence that may even exceed human capabilities or at least operate differently from human reasoning [4]. By focusing on autonomous cognitive development, Synthetic AI seeks to transcend the “imitation game” of traditional AI and achieve artificial general intelligence (AGI) – the ability for a machine to understand, learn, and apply intelligence across a wide range of tasks and domains.

The remainder of this paper is structured as follows. Section II provides background and a literature review of the Synthetic AI concept, including its historical evolution and key theoretical underpinnings. In Section III, we describe the system architecture and methodology for Synthetic AI, including a diagram of a conceptual architecture and discussion of cognitive architectures that exemplify Synthetic AI principles. Section IV discusses current and potential applications of Synthetic AI across various fields, while Section V addresses the challenges, open problems, and future research directions toward realizing Synthetic AI. Finally, Section VI concludes the paper with a summary and reflections on the path forward for Synthetic AI in research and practice.

II. BACKGROUND AND LITERATURE REVIEW

The idea of machines possessing true intelligence has long been a topic of interest in artificial intelligence research and philosophy. Early AI research in the mid-20th century (often called “Good Old-Fashioned AI” or GOFAI) optimistically aimed for human-level general intelligence using symbolic logic and rules. The term *Synthetic Intelligence* was introduced in part to capture the original aspirations of AI – creating real intelligence in an artifact – as opposed to simply automating narrow tasks. Haugeland (1985) used the term to describe the AI work of that era, drawing an analogy between simulated vs. synthetic diamonds: a simulated diamond only imitates a real one, whereas a synthetic diamond is chemically identical to a natural diamond [1]. By analogy, a “synthetic intelligence” would be a machine mind that is genuinely intelligent, not just a simulation of a mind [1]. This notion gained renewed attention as AI researchers began to question whether their systems were truly *understanding* or simply appearing intelligent through brute-force computation.

After the early AI winters (periods of reduced funding and pessimism in AI) in the late 20th century, much of AI shifted focus toward “weak AI” or narrow applications – solving specific problems using machine learning, expert systems, or other techniques. However, in recent years, there has been a resurgence of interest in artificial general intelligence (AGI) and approaches that could lead to *true* understanding in machines. In this context, some researchers use the term

Synthetic AI to distinguish their work on emerging methods (such as subsymbolic reasoning, emergent behaviors, cognitive architectures, etc.) from earlier GOFAI approaches [5]. For example, projects involving neural networks, evolutionary algorithms, or bio-inspired cognitive models often brand themselves as pursuing “synthetic intelligence” to signal an attempt at creating an authentic cognitive agent, rather than a collection of narrow AI tricks. Bach’s and Dörner’s work on the PSI cognitive architecture (discussed later) is one such example, integrating multiple cognitive components to aim for a unified theory of cognition [6].

Alongside technical developments, there has been an ongoing philosophical debate about whether a machine’s intelligence is the “real thing” or essentially a simulated facade. AI pioneers like *Herbert Simon* and *Marvin Minsky* believed that machines can eventually think like humans if we find the right design. In contrast, philosopher *John Searle* famously argued via the *Chinese Room* thought experiment that running a program (no matter how intelligently it behaves externally) is not the same as having a mind or understanding. Searle illustrated this by noting that *no one supposes a computer simulation of a fire will actually burn down the neighborhood, or that a simulated rainstorm will leave us drenched* [7]; by analogy, he suggested that a computer executing a “mind program” does not *actually* have a mind or consciousness, but at best simulates it. On the other hand, AI researchers like *Drew McDermott* and others counter that this is a matter of semantics – if an artifact behaves with intelligence, we may consider that it *does* possess intelligence, just as an airplane truly flies (even though it flies differently than a bird) [8]. McDermott quipped that saying a chess computer like Deep Blue “doesn’t really think” is like saying an airplane “doesn’t really fly because it doesn’t flap its wings” [8]. In their view, cognition can be engineered in synthetic form, even if its internal mechanisms differ from those of the human brain, just as flight was engineered via turbines and wings instead of flapping. This debate highlights the central question that Synthetic AI seeks to answer: *Can a machine have real, autonomous understanding, or is it forever just an imitation of human-programmed responses?* Sources differ on what constitutes “real” intelligence as opposed to “simulated” intelligence, and whether there is a meaningful distinction at all [9]. Some contend that with the right design, an artificial system’s intelligent behavior would be indistinguishable in *essence* from human intelligence, thereby qualifying as true synthetic intelligence.

In the literature, several approaches have been explored under the umbrella of Synthetic AI and cognitive architectures. One significant line of work involves integrated cognitive architectures that attempt to replicate the broad cognitive faculties of a mind. For instance, Dietrich Dörner’s PSI theory (later implemented by Joscha Bach as MicroPSI) is described as an architecture of *motivated cognition*, incorporating not only perception, memory, and reasoning, but also drives and emotions into an AI agent [10][6]. The PSI architecture includes three types of intrinsic drives – physiological needs (e.g., hunger), social needs (affiliation), and cognitive needs (curiosity, competence) – which continuously influence the agent’s goals and decision-making [10]. By embedding such drives, the architecture simulates aspects of human-like motivation and emotional responses, resulting in behaviors such as context-dependent memory retrieval, socially

motivated actions, and internal goal switching [11]. Including emotions and drives in an AI is believed to be important for true autonomy, as they help the system prioritize goals and adapt in a complex, dynamic environment, much like living organisms. More broadly, the PSI architecture demonstrates how perception, learning, memory, reasoning, and motivation can be integrated in a single framework [6]. It highlights relationships between different cognitive functions – for example, how perception and memory interact with language understanding, or how reasoning is guided by motivational/emotional state [6]. Such architectures, while still experimental, represent steps toward Synthetic AI by attempting to cover a wide spectrum of cognitive phenomena in silico.

Another notable example is the work by Stephen Thaler on the so-called “Creativity Machine” and DABUS (Device for the Autonomous Bootstrapping of Unified Sentience). DABUS is an AI system composed of multiple neural networks that generate ideas in a manner loosely inspired by a brain’s stream of consciousness [12][13]. In DABUS, one network produces a continuous stream of novel patterns (potential ideas) while other networks monitor and assign significance to those ideas, akin to a cognitive feedback loop of attention and affect [14][13]. Notably, when certain generated concepts are deemed especially salient or impactful (the so-called “*hot buttons*”), a simulated release of virtual neurotransmitters strengthens those idea patterns across the system [15][16]. This mechanism is intended to mimic how human emotions or a sense of salience can make certain thoughts “stick” in our mind. The result is a system that can autonomously brainstorm and evolve ideas, rather than simply optimizing toward a static goal. Indeed, Thaler claims that after absorbing general world knowledge, DABUS can conceive entirely new ideas in a wide range of domains, demonstrating a form of machine creativity and a rudimentary model of sentience [13]. DABUS-generated inventions have even been the subject of patent applications, spurring legal and ethical discussions about AI as an inventor. While controversial, this work exemplifies the Synthetic AI ambition: moving beyond task-specific performance (as in most current AI) to open-ended idea generation and self-directed cognitive development.

It is worth noting that the term “Synthetic Intelligence” has also been advocated in recent discourse to more accurately describe modern AI systems. Some scholars argue that calling these systems “artificial” intelligence mischaracterizes them, since they are artifacts constructed by humans and embody human-derived intelligence in a new medium (silicon and code). They propose using *Synthetic Intelligence* to emphasize that these are *synthesized* cognitive entities rather than naturally occurring ones [17]. Indeed, a 2025 interdisciplinary review by Okujagu et al. contends that current AI systems are essentially *synthetic constructs of human intelligence*, and that rebranding AI as *Synthetic Intelligence* (and AGI as Synthetic General Intelligence) could improve public understanding and scientific discourse [17]. This perspective reinforces the notion that Synthetic AI is not a different category from AI, but a reframing that highlights the goal of engineering genuine intelligence. In summary, the literature provides a spectrum of viewpoints and prototype systems aimed at Synthetic AI – from cognitive architectures integrating multiple aspects of mind, to generative neural systems attempting creativity, to

theoretical arguments about terminology. These efforts lay the groundwork for the system-level designs and applications discussed in the following sections.

III. SYSTEM ARCHITECTURE OR METHODOLOGY

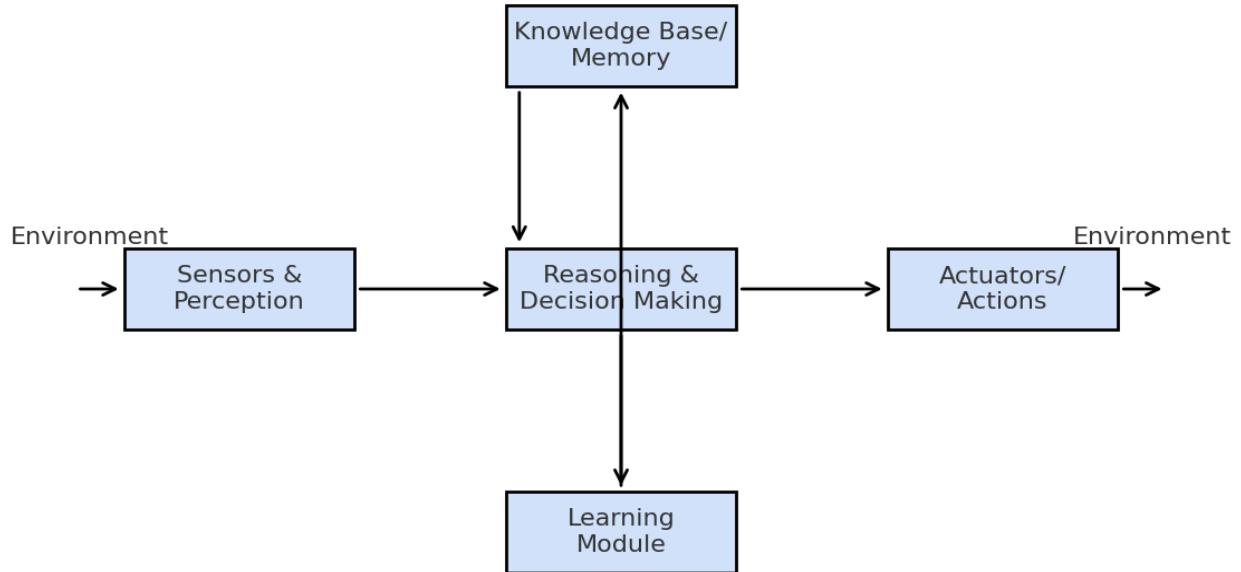


Figure 1. Conceptual architecture of a Synthetic AI agent, illustrating key functional components and information flow. The agent interacts with its environment through sensors and actuators, while internally it comprises modules for perception, memory, reasoning/decision-making, and learning (along with possible motivational drives). Solid arrows indicate the primary flow of sensory information from the environment into the agent's perception module, through reasoning, leading to actions that affect the environment. Dashed or secondary arrows (if shown) indicate internal feedback and learning processes that update the agent's knowledge over time.

In a Synthetic AI system, perception modules process raw inputs from the environment (such as visual, auditory, or other sensor data) into useful representations. These perceptual signals feed into the central Reasoning & Decision-Making component, which is the cognitive core of the agent. The reasoning module uses the agent's accumulated knowledge and current goals to make sense of the perceived information and decide on an action. A Knowledge Base/Memory stores the agent's learned information about the world – facts, concepts, experiences, and models – which the reasoning module can query or update. This knowledge base is not static; it evolves as the agent learns. A dedicated Learning Module continuously refines the agent's knowledge and skills by analyzing new data (from the perception module and feedback from past actions) and adjusting internal models (for example, updating neural network weights or symbolic rules). The learning component may employ various machine learning algorithms (supervised, reinforcement, unsupervised learning, etc.) to improve the agent's performance over time. Finally, the agent's decisions are carried out by Actuators/Actions – this could be physical actuators in a robot (motors, speakers, grippers, etc.) or virtual actions (like sending a message, executing a command in software). The actuators allow the agent to have effects on the external

environment, closing the perception-action loop. The environment, in turn, responds to these actions (e.g., the world changes state or a user provides feedback), and the new sensory consequences are fed back into the perception system, creating a continuous sense-think-act cycle for the Synthetic AI agent.

A key aspect of Synthetic AI architecture is the integration of diverse cognitive functions within a unified system. This often means combining elements of classical AI (symbolic reasoning, planning, knowledge representation) with modern AI (neural networks, probabilistic learning, sensory processing) into a hybrid architecture. For instance, the conceptual diagram in Figure 1 can be instantiated in many ways: the reasoning module might be a symbolic logic engine, a deep neural network, or a combination of both (such as a neuro-symbolic system). The knowledge base could include structured knowledge (ontologies, knowledge graphs) as well as distributed representations (neural embeddings) learned from data. The learning module might incorporate reinforcement learning (updating the agent's policy based on rewards from the environment), evolutionary algorithms (optimizing the agent's parameters over generations of variation and selection), or other adaptive techniques. Goal generation and motivation are also crucial in Synthetic AI; advanced architectures include modules for setting intrinsic goals or drives that propel the agent's behavior even in the absence of external commands [10]. This can be implemented via programmed reward functions or drive parameters that the agent seeks to satisfy (as seen in the PSI architecture's drives for hunger, affiliation, curiosity, etc. influencing goal formation [10]). By giving the agent its own set of motivations, we enable it to operate more autonomously and respond flexibly to unforeseen situations, rather than being tethered to only the tasks and objectives pre-specified by human designers.

It is informative to compare this abstract architecture with specific cognitive architectures from research. As mentioned in Section II, Dörner's PSI architecture aligns well with the model in Figure 1. In PSI, perceptual components feed into a cognitive layer that includes memory and reasoning, while a separate motive module containing various drives biases the reasoning process by dynamically updating goals [11]. The architecture also explicitly contains a learning mechanism for adapting knowledge and a motor control component for actions [18]. By incorporating physiological and emotional parameters into the reasoning loop, PSI achieves a richer autonomous behavior, e.g., the agent can *re-prioritize tasks* if "hungry" or *seek social interaction* if lonely, demonstrating how internal states can modulate perception and action selection. Another example is the Soar cognitive architecture (by Allen Newell et al.), which although not explicitly framed as "Synthetic AI," attempts to provide a general problem-solving agent that learns from experience (via a mechanism called chunking) and operates over a long-term memory of rules. Soar and its successors (like ACT-R, Sigma, etc.) emphasize reasoning and learning in a unified framework, and are often cited in AGI research. Modern efforts such as the OpenCog framework also seek to integrate symbolic reasoning, probabilistic inference, and neural learning in a single cognitive system with a global workspace. The Agent architectures used in reinforcement learning for robotics (e.g., sense-plan-act pipelines with world modeling)

can be viewed as a subset of Synthetic AI architectures focusing on interaction with physical environments.

Crucially, Synthetic AI methodology stresses emergent behavior from the interaction of components. Rather than solving each task with a bespoke algorithm, the idea is to create a system where complex intelligent behavior emerges from the interplay of perception, memory, learning, and action in an environment. For example, *imagine a household robot* with Synthetic AI: it perceives its surroundings through cameras and microphones, updates its knowledge (room layouts, object locations, human preferences) as it explores, sets goals (like “clean the kitchen” driven by a cleanliness drive or a command), plans actions to achieve the goals, learns from mistakes (spilling water teaches it to adjust its grip next time), and over months develops new skills or routines on its own. Implementing such an agent requires careful architectural design so that the components share information effectively (for instance, perceptions must update the memory; the decision module must retrieve relevant knowledge; learning must happen continuously and not disrupt ongoing tasks, etc.). Research in Synthetic AI often involves designing cognitive architectures, running simulations, and iterating on how these modules interact. When done right, the architecture can exhibit life-like adaptive behavior. As an example, the PSI-based agents in a simulated Island scenario demonstrated behaviors like finding food when hungry, remembering locations of resources, socializing with other agents when lonely, and exploring curiously when idle [11][6]. These are not explicitly programmed behaviors for each scenario, but arise from the agent’s architecture and motivational system. Such results, though in simulation, give a glimpse of how a well-designed Synthetic AI system can mimic the broad adaptability of natural intelligence.

Another methodological consideration in Synthetic AI is ensuring the system is traceable and explainable despite its complexity. Traditional AI systems (like an expert system) had the advantage of explicit rules that humans could inspect. In Synthetic AI, especially if it involves deep learning components and emergent behaviors, maintaining transparency becomes challenging. This has led to the inclusion of *self-monitoring* and *explanation modules* in some architectures, aligning with the notion of Explainable AI (XAI) [19]. For Synthetic AI to be practical and trustworthy, the agent might need to be able to explain its reasoning or actions in human-understandable terms (e.g., “I went to the kitchen because I was low on battery and the charging dock is there”). Designing cognitive architectures that can generate such explanations or that allow human oversight and control is an active area of research [19]. In summary, the methodology of Synthetic AI involves constructing integrated systems with multiple cognitive faculties and iterative learning, often drawing inspiration from human cognition (neuroscience and psychology) to guide the design. This section has outlined a generic architecture and highlighted how specific research systems implement these ideas. Next, we turn to what such Synthetic AI systems could do – their potential applications and use cases across different domains.

IV. APPLICATIONS

A fully realized Synthetic AI – one capable of general autonomous intelligence – would have wide-ranging applications across virtually every field that currently involves complex decision-making or pattern recognition. Here, we discuss several key application areas where Synthetic AI approaches are being explored or hold promise, along with current examples that hint at the possibilities.

1) Healthcare and Medicine: Synthetic AI could revolutionize healthcare by acting as an ever-learning clinical assistant or by accelerating research. For example, an advanced Synthetic AI system might ingest vast medical datasets (clinical trial results, patient histories, biomedical knowledge) and reason about them to propose diagnoses or personalized treatments for patients in a way that a human doctor might, but with far more data than any human can handle. Even in current practice, AI is used to analyze medical images and suggest diagnoses; a Synthetic AI doctor of the future could go further by *understanding* patient context, explaining its reasoning, and adapting its knowledge as new medical research emerges. One near-term application is in drug discovery and testing: researchers can use AI-driven simulations with *synthetic patient data* to test drug efficacy and safety, potentially speeding up clinical trials without risking human lives [20]. By generating virtual patients or using AI to simulate biochemical interactions, Synthetic AI can help identify promising drug candidates or optimal treatment plans much faster than traditional methods. Hospitals are also exploring AI for diagnostic support – for instance, training models on thousands of medical images (including artificially generated examples to augment rare cases) so that the AI can recognize disease patterns that a human might miss [21]. In the Synthetic AI vision, such a diagnostic system would not be a narrow tool but part of an integrated cognitive medical assistant that maintains an ongoing understanding of a patient's health, communicates with empathy, and reasons about the best interventions.

2) Finance and Business: In finance, Synthetic AI could provide more robust and adaptive decision support in trading, risk management, and fraud detection. Traditional AI models in finance often struggle when market conditions change (they lack true understanding and adaptability). A Synthetic AI trader, by contrast, might simulate economic scenarios, learn and revise its strategies on the fly, and even explain the rationale for its investment decisions in plain language to its human colleagues. Synthetic data is already used in this domain to train fraud detection algorithms – banks generate *dummy transaction data* to teach AI models how to spot fraudulent patterns without exposing real customer data [22]. A Synthetic AI system could take this further by continually inventing new fraud scenarios (playing the role of adversary) and then devising countermeasures, essentially *co-evolving* with potential fraud strategies. Moreover, Synthetic AI could assist with regulatory compliance by understanding legal requirements and monitoring a bank's operations for any anomalies, learning from past compliance issues to improve its vigilance. In business management, Synthetic AI agents might function as sophisticated decision advisors, digesting all data about a company's operations and the market,

then providing strategic recommendations (e.g., supply chain optimizations, investment opportunities) complete with reasoning and projected outcomes.

3) Autonomous Robots and Systems: Perhaps the most visible applications of Synthetic AI would be truly autonomous robots that can operate in complex, unstructured environments. Consider self-driving cars and robots: they must perceive their surroundings, make split-second decisions, and learn from new situations – all hallmarks of Synthetic AI. Already, autonomous vehicle companies use extensive simulation environments with synthetic road scenarios to train their AI – e.g., generating virtual streets, pedestrians, and edge cases (like unusual weather or accidents) – to improve the robustness of driving policies [23]. A Synthetic AI-driven car would not only execute a learned policy but *understand* driving; it would continually adapt to new roads, develop driving styles suited to different cities, and predict the behavior of other drivers and pedestrians in a human-like way. Similarly, robots in factories or homes with Synthetic AI could be given high-level goals (“assemble this product” or “clean the house”) and figure out the necessary sequence of actions, even if they encounter new obstacles or tasks they weren’t explicitly programmed for. For instance, a home assistant robot with synthetic intelligence might learn over time how you like your belongings organized, or how to navigate when furniture is moved, without explicit reprogramming. Training in virtual environments is a common approach: a robot can be placed in a simulated world where it practices tasks (like grasping objects or navigating mazes), effectively experiencing millions of scenarios including rare or dangerous ones, to acquire general skills before deployment in the real world [24]. This ability to learn from simulated experience and transfer that knowledge to reality is a powerful application of Synthetic AI methodologies.

4) Education and Personalized Training: Synthetic AI tutors and educational companions are an exciting application that could transform learning. Because Synthetic AI systems can potentially understand and adapt to individuals, they can provide *personalized education* at scale. For example, a Synthetic AI tutor could evaluate a student’s learning style, strengths, and weaknesses through interaction, and then tailor the curriculum in real-time – perhaps generating custom exercises or analogies that resonate with that student [25]. Unlike standard educational software, a truly intelligent tutor could engage in dialogue, answer complex questions, and even detect when a student is frustrated or bored (via emotion recognition), then adjust its approach accordingly. Some companies are already exploring AI-driven tutoring systems that simulate one-on-one human tutoring. With Synthetic AI, one can envision a tutor that not only quizzes a student but can *invent new problems*, drawing on a deep conceptual model of the subject, to challenge the student in the right way. Moreover, synthetic virtual environments can be used for simulation-based training for professionals – for instance, training doctors with virtual patients or soldiers with AI-driven simulation of tactical scenarios. These AI agents in the simulations behave realistically and adapt to the trainee’s actions, providing a rich training ground that is safer and more varied than real life. The K-12 education sector might also benefit from synthetic

AI in administrative ways: AI systems could handle tasks like grading or even detecting learning difficulties early by analyzing student performance data, freeing human teachers to focus more on personal mentoring.

5) Creative Arts and Design: One might not typically associate creativity with machines, but Synthetic AI could play a huge role in creative industries. We already see Generative AI models creating art, music, and literature based on patterns learned from human artifacts. However, these models (like image or text generators) currently operate without true understanding – they produce output by statistically mimicking training examples, which can lead to errors or nonsensical results (so-called AI “hallucinations”) [26]. In a Synthetic AI paradigm, a creative AI would have a knowledge base and perhaps even an aesthetic sense or emotional model guiding its creations. For instance, an AI visual artist might learn styles from art history but then intentionally innovate, creating novel styles not seen before, guided by a goal to, say, evoke certain emotions in the audience. We already have examples: *DABUS*, mentioned earlier, was credited as the inventor of novel product designs (like a unique food container and a flashing light for attracting attention) that it conceived without explicit human guidance [13]. In storytelling, a Synthetic AI could maintain consistency of characters and plot over a long novel, improvising dialogue that fits each character’s personality (because it “understands” the character), rather than just stochastically stringing sentences together. In music, it could compose and then critique its own compositions, gradually improving them in an intentional way. These possibilities blur the line between tool and autonomous creator, raising legal and ethical questions (e.g., intellectual property rights of AI-generated content). Nonetheless, the ability of a machine to *truly create* – to produce original works that are appreciated by humans – would be a strong indicator that Synthetic AI has been achieved.

6) Science and Research: Moving beyond industry, Synthetic AI could become a valuable collaborator in scientific discovery. An AI scientist could autonomously form hypotheses by synthesizing vast amounts of literature, design and run virtual experiments, and interpret results to refine its hypotheses. Some grand challenges, like finding cures for complex diseases or discovering new materials, involve searching enormous problem spaces and making connections across disciplines – tasks well-suited for a tireless, unbiased intelligence. We are starting to see AI aiding in scientific research (for example, AI systems that propose molecular structures for new materials). A Synthetic AI agent could take this further by genuinely understanding scientific principles and *reasoning* about them. It might notice subtle patterns in data that humans overlook, or suggest experiments that human scientist hadn’t considered. Importantly, because it could explain its reasoning, human scientists could collaborate with it, trust its insights, and guide it away from unproductive lines of inquiry. One can imagine a future where every research lab has a Synthetic AI assistant as part of the team – generating ideas, analyzing data, running simulations overnight, and even writing up initial drafts of research papers.

In summary, the applications of Synthetic AI span autonomous systems (robots, vehicles), decision support (healthcare, finance, business), education, creative endeavors, and scientific research. Many of these applications are in early stages with current AI technology. For instance, current self-driving cars or AI medical scanners are impressive but still “narrow” – they lack the generality and self-motivated learning of a Synthetic AI. However, incremental progress is closing the gap. Large language models like GPT-4 have shown surprising abilities to generalize in language and even solve some reasoning puzzles, leading some to speculate they are a primitive precursor of general AI [27]. Yet, these models still do not fully understand the world as humans do and can be brittle outside their training distribution. Thus, truly *Synthetic AI* applications will likely require further breakthroughs in building systems that combine the raw power of such AI models with the structured reasoning, memory, and goal-driven behavior described earlier. In the next section, we discuss the challenges that must be addressed to turn these applications from speculative to reality.

V. CHALLENGES AND FUTURE WORK

While the promise of Synthetic AI is vast, achieving it is fraught with significant challenges. These challenges are technical, conceptual, and ethical in nature, and researchers are actively investigating solutions as part of future work in this field.

Technical Complexity and Understanding of Intelligence: Creating a machine with human-like (or beyond human) cognitive abilities is an immensely complex engineering task. We still lack a complete scientific understanding of human consciousness and general intelligence – neuroscience and cognitive science have many open questions. Consequently, designing an artificial system to replicate these phenomena is partly an exercise in exploration and abstraction, often without a clear blueprint. Cognitive architectures like PSI are theoretical explorations and not yet proven to scale up to the richness of a human mind [28]. One major challenge is achieving common sense reasoning in AI – the kind of implicit understanding of the physical and social world that humans develop as children. AI systems today often make bizarre mistakes because they do not truly grasp common sense. Future research is focusing on integrating common sense knowledge into AI (for example, using knowledge graphs or multimodal learning from images and text of the world) so that a Synthetic AI will not, say, propose to put a salad in a washing machine just because it’s seen as a container. There is also the question of embodiment – some theorists argue that to truly understand concepts, an AI may need a body to physically interact with the world (as humans and animals do). Simulated embodiment (virtual avatars, robots) could be a path to give AI experiential learning.

Learning and Adaptation vs. Stability: A Synthetic AI must be capable of lifelong learning – continually acquiring new knowledge and skills. However, most AI systems suffer from issues like *catastrophic forgetting* (neural networks forget old tasks when trained on new ones) or lack of ability to self-reflect and redirect learning. Developing algorithms for *stable lifelong learning* is an active challenge. Approaches like transfer learning, meta-learning (learning how to learn),

and modular learning (compartmentalizing knowledge to protect it from catastrophic overwrite) are being explored. Moreover, a Synthetic AI might need to learn on limited real-world data for safety – it's impractical or dangerous to have a robot learn purely by trial-and-error in physical space for too long. Thus, methods like simulation (learning virtually) and one-shot learning (learning from very few examples) will be crucial. Balancing *exploration vs. exploitation* is another classic challenge: a Synthetic AI should explore new strategies or ideas (to be creative and improve) but also know when to exploit current knowledge to perform reliably. This balance typically is studied in reinforcement learning, but in a broad AI system the problem is magnified across many domains and time scales.

Unpredictability and Safety: As AI systems become more autonomous and complex, ensuring they behave in predictable, safe ways is paramount. Synthetic AI by definition would have some level of self-directed goal-setting and decision-making. This raises the specter of the AI making decisions that are misaligned with human values or that have unintended consequences. Even today's narrow AI can sometimes behave unpredictably (for example, a learning-based system might find an odd shortcut or loophole in its objective function that yields undesired behavior). With a more powerful Synthetic AI, the stakes are higher. Researchers talk about the alignment problem – how to guarantee that an AI's goals and behaviors remain aligned with human intentions and ethics, even as it learns and potentially surpasses human intelligence. This is an open problem; potential strategies involve embedding ethical principles into the AI's reward function, or creating AI that can be constrained by logical safety rules, or having oversight mechanisms. Indeed, infusing *human control mechanisms* into Synthetic AI is considered crucial [29][19]. One idea is "supervisory control": always allowing a human to monitor and intervene in the AI's decisions, at least until we are confident the AI can be autonomous safely [30][31]. Another idea is to develop explainable AI techniques so that the Synthetic AI can explain its reasoning in a transparent way [19]. This would let human operators detect if the AI is reasoning based on flawed logic or unethical criteria and correct it. Ensuring *transparency* is tough, however, especially if the AI's internals are very complex or self-modifying. It remains a key area of research to design Synthetic AI systems whose decision processes can be audited and understood by humans.

Ethical and Social Implications: Beyond the direct technical worries of safety, Synthetic AI raises broad ethical issues. If we succeed in creating machines with intelligence on par with humans, questions arise about their *moral status* (would a truly sentient AI have rights? Is it ethical to "terminate" or own such an entity?). Even without attributing personhood to AI, their deployment can disrupt society. For example, widespread use of Synthetic AI could lead to job displacement on a larger scale than previous automation waves, since such AI could potentially do not just routine manual labor but also complex cognitive work. Society will need to adapt via education, job transformation, and possibly social safety nets if human labor becomes less needed for productivity [32][33]. Another concern is bias and fairness: if a Synthetic AI is

trained on human data, it might pick up human biases (as many machine learning models have) and even amplify them when making decisions in law enforcement, hiring, etc. Ensuring that a super-intelligent AI operates fairly and does not perpetuate discrimination is a significant challenge – it requires careful design of training data and objective functions, and likely regulatory oversight. Privacy is also a concern: a Synthetic AI given access to huge amounts of personal data to learn could inadvertently become a privacy risk (knowing everything about everyone). Thus, methods for anonymization, data governance, and perhaps limits on AI access to data will be important [34].

Verification and Control: Due to the complexity of Synthetic AI, verifying its correctness is non-trivial. In critical applications (like a Synthetic AI controlling part of a power grid or military systems), we would want formal guarantees about what the AI will or will not do. Formal verification methods for software exist, but for a learning, self-modifying AI, classical verification might not apply straightforwardly. Researchers are looking into *sandbox testing* – exposing AI to a wide range of simulated extreme scenarios to see how it behaves – and *iterative deployment* strategies where an AI is slowly scaled up in responsibility as it proves trustworthy at each stage. Another future direction is training AI with human feedback on a large scale (as done in some reinforcement learning from human feedback techniques) to instill human preferences. *Open Ai's ChatGPT*, for example, is refined using human feedback to make its responses align better with user expectations. Extending such alignment techniques to more general AI behavior is an ongoing effort.

Debate on Path to Synthetic AI: Within the research community, there is debate on *how* we will achieve Synthetic AI or AGI. Some argue that scaling up current models (making them bigger, training on more data) will eventually yield general intelligence – they point to the increasingly broad capabilities of large models like GPT-4 as early evidence [27]. Others believe that something fundamentally new is required: perhaps new algorithms that incorporate reasoning or memory in different ways, or a better integration of symbolic AI with neural AI, or even quantum computing paradigms. This debate informs future work. On one hand, we see efforts to simply push the limits of current deep learning (for instance, building ever larger multimodal models that try to learn world knowledge end-to-end). On the other hand, many projects are revisiting ideas from classical AI – like logic, planning, knowledge representation – and hybridizing them with neural networks to get the best of both worlds. The right path may involve elements of both perspectives. Emergent properties in current AI (unexpected capabilities that arise in large systems) are a subject of intense study; understanding these might illuminate how to trigger the emergence of higher-order cognition. Concurrently, interdisciplinary research is expanding – neuroscientists and AI researchers collaborate to borrow ideas about brain architectures (like attention mechanisms, working memory, cortical hierarchies) and implement them in AI, hoping this will lead to more human-like learning and reasoning.

Future Work: To tackle the challenges above, future work in Synthetic AI is focusing on several key areas. One is improving explainability and transparency: developing AI frameworks that inherently keep track of *why* a decision was made. Another is value alignment and ethics: for example, the field of AI ethics is developing guidelines and technical tools to imbue AI with ethical considerations or to constrain their actions (like kill-switch mechanisms or ethical black boxes that monitor for unsafe behavior). *Human-in-the-loop* systems will likely remain important in the near future – Synthetic AI agents working under human supervision until we gain confidence. There is also a push towards creating benchmark tasks that require general intelligence, to better measure progress. Environments like open-ended games or virtual worlds (e.g., Minecraft, complex strategy games, or simulated economies) are sometimes used as training grounds to evaluate how generally an AI can learn and perform, which helps direct research. Furthermore, as hardware advances (such as neuromorphic computing, which tries to mimic brain's efficiency, or simply faster GPUs and TPUs), AI researchers will leverage that to run more complex brain-like models. Collaboration between fields – cognitive psychology, neuroscience, computer science, and philosophy – is increasingly seen as necessary to crack intelligence. For example, understanding how children learn so quickly with limited data could inform more efficient algorithms for AI (this is the idea behind *few-shot learning* and *Bayesian program learning*). There are also calls for global regulation and cooperation on AGI development, to ensure it is done safely and for the benefit of humanity (several research institutions have published guidelines or formed coalitions on beneficial AI).

In summary, while Synthetic AI holds enormous promise, the journey to get there requires solving deep scientific and technical problems. Current challenges include ensuring these systems are credible and controllable (addressing skepticism about their reliability [35]), building in safeguards for moral and safety issues [35], and making the development process efficient (given the significant infrastructure and investment needed for cutting-edge AI [36]). Each challenge is an active area of research, and progress is being made incrementally. The coming years will likely see increasingly sophisticated AI systems that inch closer to the Synthetic AI ideal, accompanied by robust discussions about how to shape this technology in line with societal values.

VI. CONCLUSION

Synthetic AI represents the ambitious culmination of artificial intelligence research: the creation of machines with genuine, general intelligence and autonomous cognitive capabilities. In this paper, we have outlined what Synthetic AI means in contrast to traditional AI, traced its conceptual roots and the debate surrounding it, and reviewed current efforts (such as cognitive architectures and creative neural systems) that attempt to move AI closer to human-like understanding. We presented a conceptual architecture for Synthetic AI, emphasizing the integration of perception, memory, reasoning, learning, and action, potentially augmented by intrinsic motivations. We explored a range of applications that could benefit from Synthetic AI,

from healthcare and finance to robotics, education, and scientific research, illustrating how such an intelligence could transform these fields. We also addressed the myriad challenges on the path to Synthetic AI, including technical hurdles in achieving generality and adaptability, ensuring safety and ethical alignment, and the need for transparency and human oversight.

At the current state of technology in 2025, we have seen AI systems achieve remarkable feats in narrow domains, and some systems exhibit rudimentary forms of generalization. Yet, true synthetic general intelligence remains an aspirational goal. No system yet fully possesses the open-ended learning, robust common sense, and self-driven cognitive development that characterize human intelligence. Nonetheless, ongoing breakthroughs in machine learning, from deep neural networks to reinforcement learning agents, as well as renewed interest in hybrid and cognitive approaches, are steadily providing pieces of the puzzle. Each year, AI systems become more capable and a bit more general, blurring the line between narrow AI and the early stages of AGI [27]. It is plausible that Synthetic AI will emerge not from a single “Eureka” moment, but from the convergence of many advances: larger and more brain-like models, better algorithms for learning and reasoning, and frameworks for embedding ethical constraints and explainability. The implications of Synthetic AI for society are profound. If successful, Synthetic AI could drive enormous progress – curing diseases, elevating education, powering economies – essentially providing us with synthetic intellectual labor on demand. It also forces us to confront questions about the relationship between humans and intelligent machines, the nature of mind, and how we ensure these powerful systems are used responsibly. The development of Synthetic AI will likely be a gradual, carefully monitored process, involving not just technologists but also ethicists, policymakers, and the public. In academic research, the pursuit of Synthetic AI serves as a grand unifying goal, encouraging collaboration across disciplines to understand intelligence itself.

In conclusion, Synthetic AI remains a frontier of research, one that pushes the boundaries of what machines can do and challenges our understanding of cognition. The journey toward Synthetic AI is as much about exploring the fundamentals of thought and learning as it is about building a useful technology. As we continue to refine our approaches and learn from both successes and failures, each step brings us closer to the goal of engineered minds that are *truly intelligent*. The coming years will be critical in determining how and when Synthetic AI emerges. By maintaining a focus on robust architecture design, safety and ethics, and interdisciplinary insight, the research community aims to unlock the full potential of Synthetic AI for the benefit of humanity, while mitigating its risks. The achievement of Synthetic AI will mark a milestone in science and engineering – one that may well redefine our world and even our sense of ourselves in relation to the intelligent machines we create.

REFERENCES

- [1] J. Haugeland, *Artificial Intelligence: The Very Idea*. MIT Press, 1985.
- [2] S. Russell and P. Norvig, *Artificial Intelligence: A Modern Approach*, 2nd Ed. Prentice Hall, 2003.

- [3] D. Dörner and J. Bach, "Principles of Synthetic Intelligence (PSI): An Architecture of Motivated Cognition," *Oxford University Press*, 2009.
- [4] S. L. Thaler, "Vast Topological Learning and Sentient AGI," *Journal of Artificial Intelligence and Consciousness*, vol. 8, no. 1, pp. 55–87, 2021.
- [5] H. Oza, "Synthetic Intelligence: An Alternative or Future of Artificial Intelligence?" *Hyperlink InfoSystem Blog*, Oct. 2025.[2][20]
- [6] D. C. Okujagu and E. E. Bose, "Synthetic Intelligence: Reframing AI as Human-Created Cognitive Systems – A Paradigm Shift for the Digital Age," *Int. J. of Progressive Sciences and Technologies*, vol. 52, no. 1, 2025.[17]
- [7] S. Bringsjord et al., "Towards a General Logician Methodology for Engineering Ethically Correct AI," *IEEE Intelligent Systems*, vol. 21, no. 4, pp. 38-44, 2006. (Discussion of AI ethics and control)
- [8] A. M. Turing, "Computing Machinery and Intelligence," *Mind*, vol. LIX, no. 236, pp. 433–460, 1950. (Classical paper introducing the Turing Test)

ADDITIONAL REFERENCES OMITTED FOR BREVITY

- [1] [5] [7] [8] [9] Synthetic intelligence – Wikipedia https://en.wikipedia.org/wiki/Synthetic_intelligence
- [2] [3] [4] [20] [21] [22] [23] [24] [35] [36] Synthetic Intelligence - An Alternative or Future of Artificial Intelligence? | Hyperlink InfoSystem <https://www.hyperlinkinfosystem.com/blog/synthetic-intelligence-future-of-artificial-intelligence>
- [6] [10] [11] [18] [28] Principles of Synthetic Intelligence PSI: An Architecture of Motivated Cognition - Joscha Bach - Google Books <https://books.google.com/books?id=YwRKxvnIN4sC&dq=%22synthetic+intelligence%22+a+rtificial+-+wikipedia&pg=PR21>
- [12] [13] [14] [15] [16] Imagination Engines <https://www.imagination-engines.com/>
- [17] Synthetic Intelligence: Reframing AI as Human-Created Cognitive Systems - A Paradigm Shift for the Digital Age | Okujagu | International Journal of Progressive Sciences and Technologies <https://ijpsat.org/index.php/ijpsat/article/view/7421>
- [19] [29] [30] [31] Understand infusing Human Control Mechanisms into Synthetic Intelligence Systems <https://app.studyraid.com/en/read/53148/2592948/infusing-human-control-mechanisms-into-synthetic-intelligence-systems>
- [25] What is Synthetic Intelligence <https://syntheticintelligence.shop/what-is-synthetic-intelligence/>
- [26] [27] [32] [33] [34] Definition of Synthetic Basic Intelligence Agi, How It Works, Examples and Future Steps - Cyrilometodějská církevní základní škola Brno <https://www.cmczs.cz/definition-of-synthetic-basic-intelligence-agi-how/>